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Abstract—Lung diseases with pneumonia, tuberculosis, chronic obstructive pulmonary disease, and lung cancer keep on major global 

health concerns, contributing to millions of deaths annually. Appropriate and precise diagnosis, primarily through medical imaging 

techniques such as chest X-rays and computed tomography, acting an essential role in effective treatment. Though, the shortage of 

expert radiologists and human limitations in interpretation complex images often lead to diagnostic delays and errors. The 

advancement in deep learning has extensively improved the capability of automated lung disease detection, leveraging architectures 

such as convolutional neural networks, vision transformers, and hybrid models. This broad review presents the evolution and impact 

of DL in lung disease diagnosis using medical imaging and analyzes performance across various architectures, explore benchmark 

datasets, and identifies persistent challenges such as data imbalance, model interpretability, and deployment barriers. The study 

underlines solutions including generative adversarial networks, explainable AI (XAI), and federated learning to deal with real-world 

boundaries. In addition, ethical considerations, case studies, and future directions are discussed to facilitate the development of 

transparent, fair, and reliable AI tools for global clinical use. 

Keywords—Deep learning, Lung disease, Medical imaging, CNN, Vision Transformer, Federated learning, Explainable AI, 

GAN 

I. INTRODUCTION 

A. Global Impact of Lung Diseases 

Lung diseases are a major global health concern, 
accounting for millions of deaths annually. Among the most 
fatal respiratory conditions are lung cancer, tuberculosis (TB), 
chronic obstructive pulmonary disease (COPD), and 
pneumonia [1]. These illnesses not only pose serious health 
risks to individuals but also impose substantial economic and 
operational burdens on healthcare systems due to prolonged 
hospital stays, frequent clinical visits, and high treatment costs 
[2]. The prevalence of these diseases is amplified by various 
risk factors, with tobacco use, environmental pollution, 
occupational exposure to hazardous substances, and the 
spread of airborne pathogens such as Mycobacterium 
tuberculosis and the SARS-CoV-2 virus, responsible for 
COVID-19 [3]. Notably, chronic respiratory diseases are the 
third leading cause of death globally, with air pollution 
contributing to approximately 1.3 million deaths [4]. The 
burden is especially high in low- and middle-income 
countries, where underdeveloped healthcare infrastructure, 
limited access to diagnostic tools, and shortages of trained 
healthcare personnel hinder early detection and effective 
treatment [5]. Addressing this global health issue requires a 
broad approach, with public health awareness, early screening 
using advanced imaging systems, vaccination programs, 
environmental regulations, and important investment in 
healthcare systems [6], particularly in resource-limited 
settings [7]. 

B. Limitations of Conventional Diagnosis 

Traditionally, diagnosis relies on expert interpretation of 
imaging modalities, supported by patient history and clinical 
examinations. Radiographs (X-rays) and CT scans are widely 
used [8], but their effectiveness depends on the experience and 
attention of the interpreting radiologist. Human factors such 
as fatigue, subjectivity, and inter-observer variability can 
result in diagnostic errors, especially in high-volume clinical 
settings. Moreover, many rural or underserved regions lack 
trained radiologists, making timely diagnosis nearly 
impossible. 

C. Deep Learning in Medical Imaging 

Deep learning, mainly with CNNs and transformer-based 
models, has allowed automated feature extraction, disease 
classification, and segmentation with extraordinary accuracy 
[9]. CNNs efficiently capture local spatial features, though 
transformers, through self-attention, model global 
relationships in images [10]. These models are Capable of 
analyzing thousands of images in minutes and Reduces 
subjective bias in interpretation. 

II. LITERATURE REVIEW 

This paper aims to provide an in-depth review of DL 
methods applied to lung disease diagnosis through medical 
imaging. Current improvements in deep learning have 
meaningfully enhanced the proficiencies of computer-aided 
diagnosis (CAD) systems for lung disease detection, 
particularly over medical imaging modalities such as CT scans 
and X-rays. Zhou et al. [11] applied deep learning methods to 
a smart IoT-based surveillance design, reaching an accuracy 

https://saanvipublications.com/journals/index.php/jgrms/index


P. Khabiya et. al, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (1), May 2025, 1-5) 

© JGRMS 2025, All Rights Reserved   26 

of 96.5% for multitarget detection using TensorFlow and 
PyTorch. Likewise, X. Zhou et.al [12] established a CNN-
RNN hybrid model that supports pre-diagnosis verdicts in 
online medical consultations, achieving 94.8% accuracy. For 
early diagnosis of lung nodules, Pradhan [13] combined 
multiple classifiers, SVM, KNN, and Decision Tree into a 
hybrid framework, reaching 92% accuracy. Jain et al. [14] 
proposed a two-stage CNN model that achieved a detection 
accuracy of 97.3%. Traditional models also laid a strong 
foundation. Jaffar et al. [15] combined Genetic Algorithms for 
feature selection with SVM classification. Namin et al. [16] 
used 3D CT imaging for segmentation and classification, 
reporting accuracies of 89% and 85%, respectively. Modern 
deep neural networks have been particularly effective in 
segmentation tasks. Chen et al. [17] suggested a DNN for 
COVID-19 CT lung lesion segmentation, achieving a Dice 
score of 95%. Zhang et al. [18] optimized CNN 
hyperparameters using evolutionary algorithms, resulting in 
93.4% accuracy. Innovations in U-Net architectures have 
further advanced segmentation. AWEU-Net by Banu et al. 
[19] incorporated attention mechanisms, achieving a 96.2% 
Dice score. Dutta [20] introduced DENSE R2UNET, reaching 
95.6% Dice via dense residual and recurrent layers. More 
recently, Asha and Bhavani Shankar [21] adopted the 
Segment Anything Model (SAM) along with pretrained 
CNNs, achieving 94.28% accuracy for lung nodule detection 
and classification. Karla et al. [22] developed Infoline, a 
lightweight CNN, which achieved 96.2% accuracy with high 
specificity and sensitivity. The emergence of foundation 
models was highlighted by Kavitha et al. [23], who trained a 
model on large-scale CT datasets and reported an AUROC of 
98.3%. Meanwhile, Md Asiful Islam et al. [24] benchmarked 
VGG, ResNet, and DenseNet, obtaining 92.5% classification 
accuracy. In a different direction, Syed Moshfeq [25] trained 
a custom CNN on spirometry-labeled data to diagnose COPD, 
achieving 90.3% accuracy. K.A. et al. [9] integrated CNN and 
LSTM networks in a hybrid framework, achieving 93.7% 
accuracy on CXR images. Bhosale et al. [1] proposed an 
RNN-based classification and prediction model, resulting in 
91.5% accuracy. The reviewed works emphasize the trend of 
moving from traditional ML to hybrid and deep architectures. 
Models leveraging segmentation, attention, and historical 
learning show superior performance, indicating promising 
directions for future lung disease detection systems. 

III. IMAGING MODALITIES AND DEEP LEARNING 

FOUNDATIONS 

A. Imaging Modalities and Datasets 

Chest X-rays (CXR): Cost-effective and widely used for 
initial screening. Mainly useful for detecting pneumonia, TB, 
and lung masses. Boundaries include low sensitivity in early 
disease stages. Computed Tomography (CT): Offers high-
resolution, cross-sectional images. Essential for detecting 
pulmonary nodules, fibrosis, and COVID-19-related 
abnormalities [26]. Allows 3D reconstruction and volumetric 
analysis [27]. Magnetic Resonance Imaging (MRI) and 
Positron Emission Tomography (PET): Used for functional 
and metabolic assessments, for example tumor metabolism in 
lung cancer, but less handy due to high costs and complexity 
[28]. 

Table 1: Summary of Public Lung Disease Datasets 

Dataset Modality Images Labels Source 

ChestX-ray14 X-ray 112,120 14 diseases NIH 

COVIDx X-ray 16,352 COVID-19, 

Pneumonia 

Open 

Access 

LIDC-IDRI CT 1,018 Lung nodules TCIA 

LUNA16 CT 888 Nodule 

detection 

LIDC 

subset 

MosMedData CT 1,110 COVID 

severity 

Open 

Access 

CheXpert X-ray 224,316 14 thoracic 

conditions 

Stanford 

PadChest X-ray 160,000 193 findings Spain 

(Open) 

RSNA 

Pneumonia 

X-ray 30,000+ Pneumonia 

(bbox) 

Kaggle 

COVID-CT CT 746 COVID vs 

Non-COVID 

Open 

Access 

BIMCV-

COVID19+ 

X-ray/CT 500,000+ COVID-19 

confirmed 

Spain 

(BIMCV) 

B. Deep Learning Fundamentals 

1) Convolutional Neural Networks:  
Convolutional Neural Networks (CNNs) have become 

initial in medical image analysis due to their proficiency in 
inevitably extracting hierarchical features from raw pixel data. 
In lung disease diagnosis, CNNs are broadly used for 
responsibilities such as disease classification, nodule 
detection, and anatomical segmentation [29]. Their 
architecture comprises multiple convolutional layers that 
capture local spatial patterns, shadowed by pooling layers to 
diminish dimensionality, and fully connected layers for 
decision-making [30]. By leveraging shared weights and local 
receptive fields, CNNs achieve high computational efficiency 
and robustness to spatial variations. Their capability to detect 
subtle abnormalities in lung CT and X-ray scans makes them 
indispensable for early and accurate diagnosis in clinical 
workflows [31]. 

2) Vision Transformers (ViTs):  
Vision Transformers signify a model shift in image 

analysis by treating images as sequences of fixed-size patches, 
alike to tokens in natural language processing. Unlike CNNs 
that focus on local receptive fields, ViTs use self-attention 
mechanisms to model worldwide relationships across the 
whole image. This competence allows them to capture long-
range dependencies and holistic context, which is particularly 
advantageous in complex analytic tasks relating high-
resolution lung images. The ViT design comprises patch 
embedding, positional encoding, and stacked transformer 
blocks, enabling effective feature representation without 
relying on convolution. Current studies have demonstrated the 
superior performance of ViTs in fine-grained classification 
and multi-label disease detection, especially when trained on 
large-scale annotated datasets [32]. 

3) Autoencoders:  
Autoencoders are unsupervised neural networks designed 

to absorb packed together illustration of input data through a 
bottleneck architecture. Including an encoder and a decoder, 
these models aim to reconstruct input images from latent 
features though diminishing reconstruction error. In medical 
imaging, autoencoders have shown potential in detecting 
irregularities by learning the distribution of healthy lung scans 
and identifying abnormalities indicative of disease [33]. It is 
also employed for unsupervised feature extraction, serving as 
a pre-processing step for downstream classification tasks. 
Moreover, variants like denoising autoencoders contribute to 
image enhancement by removing noise and artifacts from low-



P. Khabiya et. al, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (1), May 2025, 1-5) 

© JGRMS 2025, All Rights Reserved   27 

quality scans, thereby improving diagnostic clarity and aiding 
in more accurate interpretation by clinicians [34]. 

4) Generative Adversarial Networks (GANs):  
Generative Adversarial Networks have developed as 

powerful tools for creating high-fidelity synthetic images, 
addressing key challenges in medical imaging such for 
example data scarcity and class imbalance. A GAN contains 
of two competing neural networks a generator that synthesizes 
new data samples, and a discriminator that evaluates their 
authenticity [35]. In the area of lung disease diagnosis, GANs 
are expansively used for data augmentation, making diverse 
and accurate lung images that enhance the generalizability of 
classification models. Additionally, GANs facilitate super-
resolution imaging, translating lower solution scans into high-
quality counterparts. They also add to modality translation and 
segmentation refinement, making them highly versatile in 
improving both model performance and diagnostic outcomes 
[36]. As shown in Figure 1, hybrid models outperform 
individual CNN and ViT models, achieving higher sensitivity 
and overall accuracy. 

 

Fig. 1. Overview of DL model, CNN, ViT, Auto-encoders, and 

GAN, 

C. Performance Comparison of DL Models 

In this section, to evaluate the routine of numerous deep 
learning architectures for lung disease recognition using 
widely accessible datasets. The comparison includes CNN, 
ViT, ResNet, DenseNet, and hybrid models in terms of 
Accuracy, Sensitivity, and Specificity. As shown in Figure 2, 
hybrid models outperform individual CNN and ViT models, 
achieving higher sensitivity and overall accuracy. 

IV. DEEP LEARNING IN SUPERVISED LUNG DISEASE 

DIAGNOSIS 

Supervised learning has determined significant progress in 
lung disease classification by training models on labeled 
datasets. The models acquire to associate imaging features 
with disease conclusions, using several architectures 
optimized for medical image analysis. 

 

Fig. 2. Performance of Different DL Models on Lung Disease 

Detection 

A. Hybrid and Ensemble Models 

Hybrid architectures that integrate CNNs and ViTs 
purpose to exploit both local feature extraction and global 
context modeling. For instance, CNN-centered encoders can 
mine spatial patterns, whereas transformer decoders improve 
context-aware feature improvement. Similarly, CNN-SVM 
hybrids use CNNs for feature extraction and SVMs for 
classification, offering benefits in generalization and 
performance, mainly in binary classification problems [37]. 
Ensemble methods combined multiple base learners CNNs, 
ViTs, or hybrids to moderate overfitting and improve 
accuracy. These methods have been applied to distinguish 
between lung cancer subtypes (e.g., adenocarcinoma vs. 
squamous cell carcinoma) and recognize COVID-19-related 
anomalies from CT and X-ray images [3]. 

B. Performance Metrics 

Model performance is evaluating by accuracy, precision, 
recall, F1-score, AUC-ROC, and confusion matrices. For 
segmentation tasks, Dice Similarity Coefficient (DSC) and 
Intersection over Union (IoU) are common. The Benchmark 
datasets are ChestX-ray14, CheXpert [38], and COVIDx (for 
classification), LIDC-IDRI and NSCLC-Radio genomics (for 
nodule detection and cancer subtype analysis) [25]. These 
datasets offer a standardized root for comparison [39], while 
heterogeneity in annotations and disease prevalence remains a 
challenge. 

V. UNSUPERVISED AND SEMI-SUPERVISED LEARNING 

APPROACHES 

Although supervised learning has seen extraordinary 
achievement in medical imaging, it greatly relies on large, 
annotated datasets an expensive and time-intensive 
requirement in the healthcare domain [40]. Unsupervised and 
semi-supervised learning provide substitutions by leveraging 
unlabeled data, enabling broader scalability and adaptability 
in clinical applications. 

A. Unsupervised Learning 

Unsupervised learning algorithms learn data patterns 
without clear labels. In lung imaging, this methodology is used 
for tasks like clustering, anomaly detection, and feature 
extraction[41]. 

Clustering Algorithms: Methods like k-means and 
DBSCAN support in determining latent disease patterns, often 
used to stratify lung cancer patients or classify imaging 
phenotypes in COPD. 

B. Semi-Supervised Learning 

Semi-supervised learning pools a minor amount of labeled 
data with a large collection of unlabeled data. This pattern is 
especially convenient for rare lung diseases somewhere 
labeled examples are rare. 

C. Pseudo-Labeling 

This comprises producing artificial labels for unlabeled 
images using a model trained on labeled data. These pseudos 
labeled instances are then used to retrain the model, iteratively 
refining performance. 

D. Applications and Benefits 

Unsupervised and semi-supervised learning approaches 
are supportive when only a small quantity of labeled data is 
available. These methods can find hidden patterns and disease 
subtypes without needing manual labels [42]. They are 
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principally useful for early identification and finding unusual 
areas in lung scans. Although challenges like label noise and 
model instability exist, these approaches show great 
prospective for refining lung disease detection in diverse 
clinical environments. 

VI. PROPOSED FRAMEWORK 

As illustrated in Figure 3, the suggested framework 
initiates with lung image input, which is first process from 
beginning to end a 3D U-Net for segmentation. then, YOLO-
v5 is working to detect possible lung nodules, followed by the 
classification stage by means of either a Vision Transformer 
(ViT) or a hybrid CNN-SVM model. This structured pipeline 
is considered to simplify the diagnostic workflow ranging 
from image preprocessing to final disease classification, while 
enhancing accuracy and flexibility across different lung 
conditions. 

 

Fig. 3. End-to-End DL Framework for Lung Disease Diagnosis 

VII. CHALLENGES IN DEEP LEARNING FOR LUNG 

A. Imaging 

Despite the advancements, several challenges persist in 
applying DL to lung imaging: 

• Data scarcity and imbalance: High-quality annotated 
datasets are limited. 

• Interpretability: Deep learning models are frequently 
considered black boxes, building clinical adoption 
difficult.  

• Deployment: Large models require high 
computational resources, hindering deployment in 
low-resource settings. 

VIII. SOLUTIONS AND FUTURE DIRECTIONS 

Here are several strategies have been proposed to address 
these challenges: 

• GANs: Generative Adversarial Networks can generate 
synthetic medical images to augment datasets and 
address class imbalance. 

• Explainable AI (XAI): Techniques like Grad-CAM, 
LIME, and SHAP provide visual explanation for 
model decision, attractive trust. 

• Federated Learning: Enables collaborative model 
training across institutions without sharing patient 
data, preserving privacy. 

• Lightweight Models: Models like Mobile Net and 
pruning strategies enable deployment on edge devices. 

IX. CONCLUSION 

Deep learning has transformed lung disease analysis using 
medical imaging by offering precise, scalable, and 
interpretable solutions. From CNNs and ViTs to hybrid and 
ensemble models, these technologies have outdone traditional 
diagnostic methods in frequent tasks. However, challenges 
continue mainly about labeled data insufficiency, class 
imbalance, and model transparency. Innovative techniques 
similar GAN-based data augmentation, explainable AI 
frameworks, and federated learning offer feasible solutions. 

Future research should focus on creating diverse, high-quality 
datasets; integrating multi-modal clinical data; refining real-
time model organization; and ensuring ethical AI 
development through transparency, fairness, and clinical 
validation. With sustained interdisciplinary collaboration, 
deep learning models embrace great potential in 
democratizing access to expert-level diagnostics and dropping 
the global burden of lung disease 
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