
Volume (1) No (6), 2025 

Journal of Global Research in Multidisciplinary Studies (JGRMS) 

Review Paper/Research Paper 

Available online at https://saanvipublications.com/journals/index.php/jgrms/index 
 

© JGRMS 2025, All Rights Reserved   24 

Looking into How Machine Learning is Used for 

Regression Testing Within the Agile Software 

Development Context 

Dr. Bal Krishna Sharma 

Professor 

Department of Computer Sciences and Applications 

Mandsaur University 

Mandsaur  

bksharma7426@gmail.com 

Abstract—Regression testing is essential for maintaining software reliability, especially in agile development environments marked 

by frequent code changes and iterative delivery cycles. Traditional regression testing methods often fall short in keeping up with the 

speed and complexity of modern development, leading to a growing need for smarter and more efficient solutions. In this context, 

Machine Learning (ML) has been developed as a transformational method, offering intelligent capabilities such as test case selection, 

fault prediction, and change impact analysis. These developments ensure that new code modifications do not adversely affect current 

functionality by automating and optimizing testing. This paper presents a comprehensive review of how ML is being applied to 

enhance regression testing in agile settings, highlighting current methodologies, categorizing state-of-the-art applications, and 

outlining the benefits in terms of accuracy, efficiency, and automation. The review aims to support researchers and practitioners in 

leveraging ML to develop more effective and Agile software development techniques for adaptive regression testing. 

Keywords—Regression Testing, Agile Software Development, Machine Learning, Test Case Prioritization, Fault Prediction, Change 

Impact Analysis, Software Testing Automation, Intelligent Testing, Software Reliability. 

I. INTRODUCTION 

The significance of systems testing has increased in unison 
with the rapid evolution of software development and the 
rising need for high-quality as well as effective systems for 
software.  The testing procedure evaluates the system and 
guarantees that it functions as needed since it confirms the 
program's error-free integrity, dependability in carrying out its 
mandate, and proper functioning [1]. There are several testing 
techniques, but the most often used are black box, white box, 
and grey box testing. Black box testing focusses on how the 
system works rather than going deeply into its fundamental 
parts [2]. The white box test focusses on the internal 
operations of the system, operating protocols, internal 
organization, and implementation.  Grey box testing, on the 
other hand, blends the black box and white box testing 
methodologies.  This sort of testing involves the tester 
performing functional testing of the software while taking into 
consideration its internal structure, after becoming familiar 
with it. 

Many teams choose agile software development because 
it is a customer-focused methodology that speeds up software 
delivery to market through brief sprints. Additionally, projects 
that use agile software development are transparent, which 
improves cross-functional teamwork and communication [3]. 
Teams' work environments have an impact on their 
development process, which may either accelerate or slow it 
down. A Systematic Mapping Study was carried out [4]. An 
SMS aids in identifying topics and deficiencies that may be 
covered in further studies. It also aids in summarizing and 
defining the present focus of the investigation.  Organizational 
management of workflows, teams, online tools, procedures, 
and established work norms may be better understood via the 

methodical examination of the confluence of hybrid work as 
well as agile software development. 

ML models can forecast problems, create test cases, and 
optimize regression testing by utilizing data from previous 
software projects. As a result, testing now requires less human 
labor, and accuracy and coverage have increased [5]. ML-
driven testing allows for the exploration of more exhaustive 
test cases, providing better coverage and reducing the 
likelihood of bugs escaping into production The integration of 
ML into software testing has far-reaching implications [6], 
including improvements in cost efficiency, faster release 
cycles, and more reliable software products. However, the 
application of ML is not without challenges.  

A. Structure of the Paper 

This document follows the following format: Section II 
covers regression testing in agile environments. Section III 
explores ML applications in regression testing. Section IV 
highlights ML tools and techniques. Section V presents 
related literature, and Section VI ends with important 
discoveries and future projects. 

II. REGRESSION TESTING IN AGILE ENVIRONMENTS 

Every software increment that is being designed and tested 
has a short testing period, and as was already said, regression 
testing has a very short testing period as well.  Regression 
testing is comparable to other testing in that it allows all team 
members to develop tests, since agile promotes teamwork on 
tests. Regression testing entails retesting both the updated 
code and a particular impacted area of the original code. 
Regression testing automation looks like the best course of 
action. Regression testing in agile development contexts is 

https://saanvipublications.com/journals/index.php/jgrms/index
mailto:bksharma7426@gmail.com


Dr. B. K. Sharma, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (6), June 2025, 24-29) 

© JGRMS 2025, All Rights Reserved   25 

finding the automated method difficult, nevertheless, 
especially because of time restrictions [7]. If these automation 
scripts are created and updated on a weekly or nightly basis, 
the time required will become a limiting issue. In agile 
development settings, regression testing should prioritize tests 
for the following cycle in order to facilitate timely regression 
testing. As it can construct test cases, they may prioritize them 
using the details of upcoming release plans, which are 
specified by the requirements for each release. It may have 
strategies for using the knowledge that may be available for 
next release cycles, which might improve the efficacy and 
efficiency of the regression testing procedure going forward. 

 

Fig. 1. Regression Testing in Agile Environment 

The typical software release cycle for iteration "i", starting 
with specifications, followed by development, testing (see 
Figure 1), and production deployment. In agile configurations, 
regression testing is an essential part of the testing phase to 
ensure that new changes don't affect functionality that 
currently exists. Feedback from each cycle helps prepare specs 
for the next release, highlighting the iterative nature of the 
process. 

A. Characteristics of Agile Projects 

Agile methods need less planning and divide tasks into 
digestible portions. The software development life cycle-
compliant agile methodology is designed for short-term 
initiatives, including collaboration [8]. The software 
development life cycle includes the following phases: 
gathering requirements, designing, coding, analyzing, testing, 
and maintenance. To reduce software risks, customers as well 
as the management of the development team collaborate. This 
agile method's iterative nature permits modifications in 
response to customer satisfaction. Several iterations make it 
simple to introduce new features in an agile approach [9]. 

• Iterative: Agile software approaches prioritize client 
satisfaction through several iterations of a single need. 

• Modularity: The whole system is divided into 
smaller, easier-to-manage pieces using an agile 
methodology. Modularity is essential to the software 
development process. 

• Time Boxing: The iterative nature of the agile 
technique requires time limitations for each module 
and its accompanying cycle. 

• Parsimony: Agile methods need parsimony to 
minimize risks and achieve goals with the fewest 
modules feasible. 

B. Challenges of Regression Testing in Agile 

In an agile development setting, the regression testing 
team faces the following difficulties [10]: 

• Lack of Expertise: As the project progresses, more 
specialists will be needed for more in-depth testing, 
such as integration and performance testing. To 
properly prepare test cases, the team should speak with 
experts inside the company to assess and collect 
requirements. 

• Frequent change in requirements: Customers will 
occasionally request constant changes to their needs. 
This leads to unstable test cases that eventually launch 
the entire iteration. 

• Faster test suite growth: As each sprint is released, 
the number of test suites increases as well. It becomes 
impossible to maintain such a huge test suite in a large-
scale project. Frequently removing outdated test cases 
is necessary to guarantee proper upkeep. 

• Automation of test cases: Test case automation 
shouldn't be a compulsory practice due to the increased 
maintenance needed. When and when automated test 
cases are required. 

• Insufficient communication among stakeholders: 
Stakeholder communication must be smooth in order 
to fully comprehend the system change that is taking 
place. Respectful stakeholders ought to be informed 
about developments in other departments. 

C. Advanced Regression Techniques 

The evolution of regression techniques has significantly 
transformed the landscape of predictive modelling, 
particularly within the realm of ML. Random forest regression 
is unique among the sophisticated techniques because it can 
efficiently handle non-linear correlations as well as 
interactions between variables [11]. This method improves 
accuracy and resilience by building numerous decision trees 
as well as aggregating their predictions using ensemble 
learning. In comparison, generalized linear models offer 
flexibility in modelling diverse types of response variables, 
effectively capturing underlying patterns in data. The 
application of these regression models extends beyond 
theoretical exploration; they play a crucial role in practical 
scenarios, such as optimizing vehicle routing problems, where 
objective values can be accurately predicted from input data 
without relying on traditional optimization techniques. 
Furthermore, studies demonstrate that advanced regression 
techniques also enhance fields like fire detection systems, 
achieving remarkable accuracy rates, as shown by the high 
performance of logistic regression at 99%. By harnessing 
these methodologies, researchers can robustly address 
complex real-world challenges and contribute to more 
effective decision-making processes. 

III. MACHINE LEARNING APPLICATIONS IN REGRESSION 

TESTING 

Regression testing may now be improved with the use of 
ML, especially within Agile software development 
environments that require rapid and continuous testing. ML 
techniques are used to automate and optimize various aspects 
of regression testing, making it more efficient, targeted, and 
scalable. One of the most common applications is test case 
prioritization, in which ML models rank test cases based on 
their potential to uncover mistakes by reviewing previous test 
execution data, code updates, and defect patterns [12]. This 
helps in executing the most critical tests first, saving time and 
resources. Fault prediction is another important use case, 
where teams may concentrate their testing efforts on high-risk 
regions by using ML methods to identify codebase modules 

Specs for 
Release i + 

Specs for 

Release  

Dev Release i 

Move to Production 

Release i 
Test Release i 



Dr. B. K. Sharma, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (6), June 2025, 24-29) 

© JGRMS 2025, All Rights Reserved   26 

that are more likely to have flaws [13]. Similarly, test suite 
minimization and selection use clustering and classification 
techniques to eliminate redundant test cases while maintaining 
adequate coverage. Change impact analysis benefits from ML 
by predicting how code modifications affect other 
components, guiding testers on which areas need re-
evaluation. These applications not only reduce manual effort 
but also adapt dynamically to changing codebases, enabling 
smarter regression testing aligned with Agile principles. 
Overall, ML brings intelligence and automation to regression 
testing, improving its accuracy, speed, and effectiveness. 

A. Machine Learning in Software Testing 

Time and ML in software testing have both helped 
software testing reach new heights. It was created as a result 
of the usage of ML in the validation of new software as well 
as applications. ML is a method of analyzing prior data to gain 
a better understanding and make better decisions about current 
and future challenges [14]. It comprises mathematical 
algorithms that can be modified based on data understanding 
and offer the most accurate answer possible. Neural networks 
used in deep learning, a kind of AI, replicate how the human 
brain operates. Deep learning can also make use of genetic 
algorithms and rule-based systems. However, neural networks 
are commonly used as a technology in deep learning systems. 

B. ML Techniques for Fault Prediction 

There are two primary classifications for ML techniques: 

• Supervised learning: In supervised learning, both 
the response variables and the predictors are provided.  
They provide many supervised learning algorithms, 
including Naïve Bayes, Decision Trees, and Random 
Forest. 

• Unsupervised learning: In general, the unsupervised 
learning strategy is applied when no defect data is 
available. Here, the algorithm uncovers a pattern or 
hidden structure in the unlabeled data. If fault 
prediction requires defects to be predicted at several 
levels, clustering will be the most effective method. 

C. Test Case Prioritization 

The key publications on test case prioritization as well as 
their historical significance. Eighty percent of the testing 
method is regression testing, which is essential for comparing 
software to revised requirements and quickly resolving 
defects. But because of its frequency, limited resources, and 
time-consuming nature, it poses difficulties [15]. Testing for 
regression in real-time embedded systems is very challenging 
due to the simulation environment's strict time constraints and 
the supervision of several efforts, including Retest-All, 
Regression Test Selection (RTS), Test Case Prioritization 
(TCP), and Test Suite Minimization (TSM). TCP is a method 
in regression testing that optimizes the order in which test 
cases are performed. Finding and running the most important 
test cases first is TCP's main goal, which enables the early 
identification of any software problems. Test cases that 
demonstrate at least one issue are chosen using a safe selection 
technique to achieve safe regression test selection, even if this 
does not always provide safety due to various circumstances. 
On the other hand, certain test cases are eliminated due to 
unsafe test case selection techniques. TCP highlights that 
during testing, test cases with a higher priority should be 
carried out faster.   The time and money-efficient offline TCP 
method is not regarded as an expense. 

D. Application of Regression Testing Techniques 

The worry that some potentially useful technology is being 
developed in academics but isn't always used in business.  The 
term "academia-industry technology transfer gap" refers to the 
discrepancy between the cutting-edge methods that are 
suggested in academia and those that are actually employed in 
real-world software [16]. Raising awareness of the gap by 
voicing concerns about IR&A of RT techniques is critical, but 
it won't solve the challenge of actually implementing these 
approaches on its own.  This section aims to determine if and 
to what degree techniques developed in the academic 
community have been applied to real-world software 
development. It expects that their live repository solution will 
identify these studies in the future and expand the results 
provided here, as previously said, there may be others that 
have been implemented but did not undergo their assessment 
because they were not specifically prompted by IR&A. 

IV. MACHINE LEARNING TOOLS AND TECHNIQUES FOR 

REGRESSION TESTING 

ML has introduced a new dimension to regression testing 
by enabling predictive, intelligent, and automated decision-
making processes [17]. To prioritize test cases, analyze code 
changes, and find areas prone to errors, several ML methods 
are utilized, including SVM, decision trees, neural networks, 
as well as clustering approaches [18]. These models are 
trained using data collected in the past, including metrics for 
code complexity, defect logs, and change history to make 
informed predictions about where regressions are likely to 
occur. Effective use of these algorithms requires proper 
feature engineering transforming raw software metrics into 
meaningful input for ML models. 

A. Open Source in Machine Learning 

Provides a high-level overview of open-source software 
and how it relates to other areas of science, notably ML. 
Avoiding to address any unfavorable viewpoints on open 
source might lead the reader to believe that they are 
excessively optimistic about its benefits [19]. The fact is that 
gathering hard information on the topic of proprietary systems 
vs open source software is incredibly difficult.  They argue, 
on moral, ethical, and social grounds, that open source should 
be the primary software publication choice for ML research, 
and they point out the numerous benefits of open-source 
software development.  The open scientific method also 
promotes the sharing of data as well as resources, which has 
several benefits. This article highlights the benefits of open-
source software for ML research, which satisfies both 
scientific and software-related objectives. 

B. Analysis Based on Machine Learning for Behavioral 

Distinction 

The researchers sought to see if they could distinguish the 
difference between sadness and anxiety by searching for a 
unique pattern of biased responsiveness to emotional stimuli 
in both conditions [20]. The test battery was devised to assist 
us in achieving their aim. The battery focuses on four types of 
biases: attention, memory, self-interpretation, and expectation 
biases. Even in the presence of large scoring noise and 
instrumentals, these methods enable the detection of complex 
nonlinear high-dimensional particular interactions that may 
impact output predictions. ML techniques based on decision 
tree methods were used especially. In order to categorize 
subjects into four groups, they were designed to be more 
sensitive: Low levels of anxiety and depression [LAD], low 



Dr. B. K. Sharma, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (6), June 2025, 24-29) 

© JGRMS 2025, All Rights Reserved   27 

levels of anxiety and depression [HD], low levels of 
depression and anxiety [HA], and high levels of anxiety and 
depression [HAD]. Each participant's self-report 
questionnaire responses were used to categorize their anxiety 
and depression levels, creating an asymptomatic profile.  The 
ML model was trained using the behavioral tasks to infer each 
participant's symptomatic characteristics. 

C. Integration with CI/CD Pipelines 

DevOps is a set of methods that mixes IT operations (Ops) 
with software development (Dev), with the purpose of 
minimizing the development lifecycle and continually 
providing high-quality software [21]. By promoting 
cooperation between development and operations teams, the 
DevOps concept dismantles conventional silos [22]. The 
agility and speed needed in contemporary software 
development are achieved through the use of DevOps 
techniques, such as CI/CD. Figure 2 illustrates how DevOps 
improves the theoretical foundation of CI/CD by highlighting 
automation, monitoring, and shared responsibilities—all of 
which are essential for successfully deploying CI/CD 
pipelines. 

 

Fig. 2. Agile and DevOps Integration with CI/CD 

An agile DevOps lifecycle starting from business 
requirements and sprint planning, followed by development 
with daily SCRUMs, code commit, automated build and 
testing, deployment, release, monitoring (see in Figure 2), and 
continuous improvement through retrospectives. 

V. LITERATURE REVIEW 

This literature review section examines recent 
advancements, challenges, and research gaps in agile software 
development, focusing on regression testing, security 
integration, AI applications, and ML alignment within agile 
and continuous delivery contexts. 

Das and Gary (2025) Methodically mapping research gaps 
as well as trends in regression analysis in agile environments, 
pinpointing areas that need more investigation to improve 
alignment with value-driven outcomes and agile processes. 
Method: 35 main studies were examined in a comprehensive 
mapping study. The study offered a thorough overview of the 

industry by classifying studies according to their 
methodology, agile frameworks, evaluation measures, and 
emphasis areas. Findings:  The results place a high emphasis 
on test selection and prioritization, which reflects the necessity 
of agile workflows for optimal defect detection and execution 
efficiency. However, there is a lack of research in areas like 
cost analysis, test creation, and test minimization. The 
majority of current assessment metrics focus on technical 
results, ignoring agile-specific elements like iterative 
processes and the business effect of defect severity [23].  

Valdés-Rodríguez et al. (2024) examines current 
approaches in the literature about safe software development 
in the context of small and medium-sized businesses utilizing 
agile software development techniques, with a 20.2% focus on 
SMEs in particular.  The techniques that demonstrate how to 
effectively integrate safety features into the software 
development lifecycle are then analyzed and categorized.  The 
results demonstrate how crucial it is to address security in an 
agile environment, since it remains a significant barrier in 
software development. Additionally, small businesses need to 
use effective tactics to ensure long-term profitability and 
application protection [24]. 

Selva-Mora and Quesada-López (2024) Agile software 
development is popular because it can quickly adapt to 
organizational demands, but it has trouble incorporating 
security procedures. Aligning security practices with agility is 
a tough task because, despite its effectiveness in providing 
prioritized functionality, non-functional requirements 
particularly security remain difficult to achieve. The Building 
Security in Maturity Model and the phases of the software 
development life cycle to classify 252 safety measures from 
35 primary studies.  Furthermore, it highlights 38 advantages, 
stressing safety awareness, implementation, as well as 
alignment with agility. It makes an effort to integrate security 
practices into Agile environments, emphasizing the value of 
empirical analysis and the need to ascertain the actual 
advantages of recommended security measures in real-world 
contexts. More agile that are software development [25]. 

Das (2024) Agile software development emphasizes rapid 
delivery of incremental features, raising concerns about 
software testing quality before release. Regression testing 
ensures that changes made to the code do not cause problems 
with features that have already been supplied. The challenge 
is to make sure that after stopping the delivery process, new 
code changes don't interfere with existing code. adapting 
existing regression test selection and prioritization algorithms 
to account for agile-specific process attributes such as time 
and value.  The study tries to officially explain how regression 
testing is integrated within the framework of Agile Software 
Development. Additionally, the research goal is to develop 
regression test selection and Prioritization algorithms using 
ML techniques tailored to the characteristics of agile software 
development. Providing high-quality software within tight 
timeframes As well as revolutionizing the current approach to 
regression testing in agile software development are the goals 
[26]. 

Cabrero-Daniel (2023) Enhancing continuous delivery 
and integration by combining agile software development 
methodologies with artificial intelligence. An extensive 
literature survey as well as longitudinal meta-analysis of the 
articles that were obtained were used to investigate the role of 
AI and its possible applications in Agile software 
development. Critical issues, such the requirement for certain 



Dr. B. K. Sharma, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (6), June 2025, 24-29) 

© JGRMS 2025, All Rights Reserved   28 

socio-technical knowledge, were identified with the aid of the 
review.  While better software development techniques might 
be facilitated by AI [27]. 

William et al. (2021) A software development 
environment that is agile. Poor task distribution might lead to 
client rejection, team members being demonized, as well as 
the project failing.  Over the last decade, a large number of 
scholars have investigated various strategies for assigning 
labor in Distributed Agile. They used a variety of 
methodologies, including Bayesian networks and ontologies, 
which had not been used in the dispersed assignment of Agile 
software development jobs. To create and apply an ML-based 
job allocation technique in remote Agile software 
development, with the proposed model proving to be more 
accurate in work assignment [28] 

Ranawana and Karunananda (2021) the alignment of ML 
production with normal software development methods is a 

common source of difficulty for software development teams. 
Depending on the production environment and real-time data 
adds another layer of complexity to the already difficult data 
gathering and preparation procedure. a standardized 
framework that streamlines software and ML engineering 
processes to make it easier to plan, build, and deploy ML 
applications. By incorporating, evaluating, and producing in 
real-time, the project and ML development risks may be 
greatly mitigated. Presenting a framework for the creation of 
ML applications, the MLASDLC brings together ideas from 
DevOps, MLOps, as well as normal software development life 
cycle techniques (SDLC) [29]. 

Table I summarizes studies on the issue of studying the use 
of machine learning for regression testing in agile software 
development systems. It covers the methodology, main 
findings, problems, and future prospects of this field 

TABLE I.  LITERATURE OF REVIEW ON LOOKING INTO HOW MACHINE LEARNING IS USED FOR REGRESSION TESTING IN AGILE SOFTWARE DEVELOPMENT 

ENVIRONMENTS 

Author Study On Approach Key Findings Challenges Future Directions 

Das and Gary 

(2025) 

Exploring 35 

Primary Studies in 

a Systematic 
Mapping Study 

(SMS) 

Focus on test prioritization 

and selection- Emphasis on 

fault detection and 
execution efficiency- 

Categorized studies by 

metrics, frameworks 

Under-explored areas: test 

generation, test 

minimization, and cost 
analysis- Narrow metric 

coverage 

Explore test 

generation/minimization 

in agile- Incorporate 
cost and business impact 

metrics- Align more 

with agile principles 

Regression testing in 

agile environments 

Valdés-

Rodríguez et 

al. (2024) 

Secure software 

development in 

SMEs using Agile 

Analysis of security 

practices in Agile SDLC 

Emphasizes the need for 

security in Agile 

environments; identifies 
successful practices 

SMEs face difficulties in 

integrating security 

effectively 

Develop lightweight 

security frameworks 

tailored to SMEs 

Selva-Mora 

and Quesada-
López, (2024) 

Security 

integration in 
Agile SDLC 

Mapping of 252 security 

practices across BSIMM 
and SDLC stages 

Highlights importance of 

aligning security with Agile; 
identifies 38 benefits 

Lack of empirical 

validation; difficulty in 
alignment with agility 

Evaluate effectiveness 

of practices in real-
world Agile settings 

Das (2024) Regression testing 

in Agile using ML 

Development of test 

selection and prioritization 

algorithms using ML 

ML improves regression 

testing efficiency; better 

quality assurance in Agile 

Handling time/value 

constraints and frequent 

code changes 

Refine ML-based 

regression testing 

models for Agile 
environments 

Cabrero-

Daniel (2023) 

AI integration in 

Agile 
development 

Systematic literature 

review and meta-analysis 

Identifies AI's potential in 

improving continuous 
delivery and integration 

Requires socio-technical 

expertise and proper 
alignment 

Enhance AI models for 

seamless Agile 
integration 

William et al. 

(2021) 

Job allocation in 

Distributed Agile 

ML-based task assignment 

method 

ML outperforms traditional 

methods (ontologies, 

Bayesian networks) 

Lack of adoption in real 

Agile settings 

Broaden ML usage in 

distributed Agile team 

management 

Ranawana 

and 

Karunananda 
(2021) 

Alignment of ML 

production with 

traditional 
software 

development 

processes 

Proposed a standardized 

framework (MLASDLC) 

integrating DevOps, 
MLOps, and conventional 

SDLC practices 

The framework simplifies 

planning, development, and 

deployment of ML 
applications while 

mitigating associated risks 

Handling real-time data 

complexities and 

integrating ML 
workflows with existing 

software pipelines 

Further refining 

MLASDLC to 

enhance real-time 
performance, 

scalability, and 

operational alignment 

VI. CONCLUSION AND FUTURE WORK 

Regression testing is a critical component of agile software 
development, and this section delves into how ML has 
revolutionized testing by making it more efficient and 
effective. Agile's iterative and fast-paced nature presents 
unique challenges for regression testing, such as time 
constraints, rapid requirement changes, and test suite 
maintenance. The integration of ML techniques such as test 
case prioritization, fault prediction, and change impact 
analysis has shown promising results in addressing these 
challenges by automating tasks, improving accuracy, and 
optimizing resource allocation. These advancements have not 
only minimized manual effort but have also made regression 
testing more intelligent and adaptive. 

In the future, scientists should work on ML algorithms that 
are more reliable and use less reference data, making them 

more applicable in early stages of development or in data-
scarce environments. Additionally, exploring hybrid testing 
frameworks that integrate human insight with ML-driven 
automation can help in overcoming current limitations. 
Further studies are also needed on adaptive learning models 
that evolve with the project and on creating standardized 
datasets and benchmarks to evaluate and compare ML-based 
regression testing approaches. Investigating domain-specific 
applications of ML in regression testing across industries 
could also provide valuable insights and improve 
generalizability. 

REFERENCES 

[1] A. K. Polinati, “Devops and AI: Automating Software Delivery 
Pipelines for Continuous Integration and Deployment,” 
Nanotechnol. Perceptions, vol. 20, no. 4, 2024. 

[2] S. I. Khaleel and R. Anan, “A review paper: optimal test cases for 



Dr. B. K. Sharma, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (6), June 2025, 24-29) 

© JGRMS 2025, All Rights Reserved   29 

regression testing using artificial intelligent techniques,” Int. J. 
Electr. Comput. Eng., vol. 13, no. 2, pp. 1803–1816, 2023, doi: 

10.11591/ijece.v13i2.pp1803-1816. 

[3] D. Khanna, E. L. Christensen, S. Gosu, X. Wang, and M. 

Paasivaara, “Hybrid work meets agile software development: A 

systematic mapping study,” Proc. - 2024 IEEE/ACM 17th Int. 
Conf. Coop. Hum. Asp. Softw. Eng. CHASE 2024, pp. 57–67, 2024, 
doi: 10.1145/3641822.3641863. 

[4] V. Prajapati, “Advances in Software Development Life Cycle 
Models : Trends and Innovations for Modern Applications,” J. 
Glob. Res. Electron. Commun., vol. 1, no. 4, pp. 1–6, 2025. 

[5] A. Walvekar, “Leveraging Machine Learning for Software Testing 
and Quality Assessment,” no. Ml, pp. 2–7, 2021. 

[6] S. S. S. Neeli, “Key Challenges and Strategies in Managing 
Databases for Data Science and Machine Learning,” Int. J. Lead. 
Res. Publ., vol. 2, no. 3, p. 9, 2021. 

[7] S. Faizullah and S. Almutairi, “Considerations for Regression 

Testing Process in Agile Development Environments,” Int. J. Adv. 

Res. Comput. Sci. Softw. Eng., vol. 8, no. 1, p. 153, 2018, doi: 
10.23956/ijarcsse.v8i1.565. 

[8] S. R. Thota, S. Arora, and S. Gupta, “Al-Driven Automated 

Software Documentation Generation for Enhanced Development 
Productivity,” in 2024 International Conference on Data Science 

and Network Security (ICDSNS), IEEE, Jul. 2024, pp. 1–7. doi: 
10.1109/ICDSNS62112.2024.10691221. 

[9] S. Sharma, D. Sarkar, and D. Gupta, “Agile Processes and 

Methodologies: A Conceptual Study.,” Int. J. Comput. Sci. Eng., 
vol. 4, no. 5, pp. 892–898, 2012. 

[10] S. Chaudhary, “Regression Testing in Agile: Concepts, Strategies 
and Challenges,” Int. J. Res. Advent Technol., vol. 7, no. 5, pp. 
418–421, 2019, doi: 10.32622/ijrat.752019218. 

[11] N. Rawat, V. Somani, and A. K. Tripathi, “Machine Learning 
Approach for Regression Testing: A Case Study in Markov Chain 
Model,” vol. 12, pp. 945–952, 2024. 

[12] A. S and D. P. T, “Machine Learning for Automation Software 

Testing Challenges, Use Cases Advantages & Disadvantages,” Int. 
J. Innov. Sci. Res. Technol., vol. 5, no. 9, 2020. 

[13] A. Goyal, “Scaling Agile Practices with Quantum Computing for 

Multi-Vendor Engineering Solutions in Global Markets,” Int. J. 

Curr. Eng. Technol., vol. 12, no. 06, Jun. 2022, doi: 
10.14741/ijcet/v.12.6.10. 

[14] P. Rasal, “Usage of Machine Learning Algorithms in Software 
Testing,” J. Orient. Inst., vol. 71, no. 4, 2022. 

[15] J. Ahmad and S. Baharom, “A systematic literature review of the 

test case prioritization technique for sequence of events,” Int. J. 
Appl. Eng. Res., vol. 12, no. 7, pp. 1389–1395, 2017. 

[16] R. Greca, B. Miranda, and A. Bertolino, “State of Practical 
Applicability of Regression Testing Research: A Live Systematic 

Literature Review,” ACM Comput. Surv., vol. 55, no. 13s, 2023, 
doi: 10.1145/3579851. 

[17] Abhishek, A. Dhankar, and N. Gupta, “A Systematic Review of 

Techniques, Tools and Applications of Machine Learning,” in 

2021 Third International Conference on Intelligent 
Communication Technologies and Virtual Mobile Networks 

(ICICV), IEEE, Feb. 2021, pp. 764–768. doi: 
10.1109/ICICV50876.2021.9388637. 

[18] A. Goyal, “Optimising Cloud-Based CI/CD Pipelines: Techniques 

for Rapid Software Deployment,” Tech. Int. J. Eng. Res., vol. 11, 
no. 11, pp. 896–904, 2024. 

[19] S. Sonnenburg et al., “The Need for Open Source Software in 

Machine Learning,” J. Mach. Learn. Res., vol. 8, no. 81, p. 
2443−2466, 2007. 

[20] M. R. Kishore, “A Review on Machine Learning Tools and 
Techniques,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 6, 
Jun. 2022, doi: 10.22214/ijraset.2022.44888. 

[21] P. S. Emmanni, “Implementing CI/CD Pipelines for Enhanced 
Efficiency in IT Projects,” Int. J. Sci. Res., vol. 9, no. 9, pp. 1616–
1619, Sep. 2020, doi: 10.21275/SR24402001528. 

[22] G. Modalavalasa, “The Role of DevOps in Streamlining Software 

Delivery: Key Practices for Seamless CI/CD,” Int. J. Adv. Res. Sci. 

Commun. Technol., vol. 1, no. 12, pp. 258–267, Jan. 2021, doi: 
10.48175/IJARSCT-8978C. 

[23] S. Das and K. Gary, “Regression Testing in Agile—A Systematic 

Mapping Study,” Software, vol. 4, no. 2, p. 9, Apr. 2025, doi: 
10.3390/software4020009. 

[24] Y. Valdés-Rodríguez, J. Hochstetter-Diez, M. Diéguez-Rebolledo, 
A. Bustamante-Mora, and R. Cadena-Martínez, “Analysis of 

Strategies for the Integration of Security Practices in Agile 

Software Development: A Sustainable SME Approach,” IEEE 
Access, vol. 12, pp. 35204–35230, 2024, doi: 
10.1109/ACCESS.2024.3372385. 

[25] A. Selva-Mora and C. Quesada-López, “Security Practices in 

Agile Software Development A Mapping Study,” in 2024 

IEEE/ACM International Workshop on Software-Intensive 
Business (IWSiB), 2024, pp. 56–63. 

[26] S. Das, “Agile Regression Testing,” in 2024 IEEE Conference on 

Software Testing, Verification and Validation (ICST), IEEE, May 

2024, pp. 457–459. doi: 10.1109/ICST60714.2024.00054. 

[27] B. Cabrero-Daniel, “AI for Agile development: a Meta-Analysis,” 
pp. 1–9, 2023, doi: 10.48550/arXiv.2305.08093. 

[28] P. William, P. Kumar, G. S. Chhabra, and K. Vengatesan, “Task 

Allocation in Distributed Agile Software Development using 
Machine Learning Approach,” in Proceedings of IEEE 

International Conference on Disruptive Technologies for Multi-

Disciplinary Research and Applications, CENTCON 2021, 2021. 
doi: 10.1109/CENTCON52345.2021.9688114. 

[29] R. Ranawana and A. S. Karunananda, “An Agile Software 
Development Life Cycle Model for Machine Learning Application 

Development,” in 5th SLAAI - International Conference on 

Artificial Intelligence and 17th Annual Sessions, SLAAI-ICAI 
2021, 2021. doi: 10.1109/SLAAI-ICAI54477.2021.9664736. 

 

 


