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Abstract—The reliability of mechanical systems in industrial environments relies heavily on accurate and timely fault detection, 

which is made possible through efficient sensor data acquisition techniques. This review investigates the role of various sensors and 

acquisition methods in detecting faults in mechanical components, highlighting recent advances and applications. The study 

categorizes key sensor types such as temperature, motion, proximity, and chemical sensors and explores their roles in real-time 

monitoring and diagnostics. Further emphasis is placed on modern data acquisition techniques, including synchronization methods, 

signal preprocessing, and intelligent systems that enhance decision-making accuracy. It also explores the integration of machine 

learning (ML) and deep learning (DL) models in fault detection frameworks, which improve diagnostic efficiency and reduce 

dependency on manual inspection. Additionally, the review presents comparative findings from recent open-access studies to evaluate 

strengths, challenges, and future directions. The importance of accuracy and timeliness is discussed, emphasizing how delayed or 

incorrect detection can affect industrial productivity and safety. Overall, this review serves as a foundation for researchers and 

engineers seeking to develop or improve sensor-based fault detection systems in mechanical applications. 

Keywords—Sensor data, acquisition, fault detection, mechanical systems, real-time monitoring, machine learning, industrial diagnostics, 

timeliness 

I. INTRODUCTION 

One essential component of industrial operations is 
thought to be mechanical machinery. They therefore have a 
significant impact on the manufacturing and production 
processes. Because of their significant role in the 
manufacturing line, they are frequently positioned in harsh 
settings and places, which leaves them vulnerable to a variety 
of defects and malfunctions. In complex sensor systems, faults 
are characterized by unforeseen events that might happen at a 
certain moment and cause larger occurrences or a chain of 
additional unforeseen events [1][2][3]. Sensors are widely 
used for acquiring information and signals, especially in 
environmental monitoring, aquaculture system monitoring, 
disease detection, machinery monitoring systems and 
agricultural monitoring [4]. Multi-sensor information fusion 
technology is becoming more and more necessary for 
intelligent systems as science and technology progress; it is 
becoming more and more significant in the field of industrial 
machinery and equipment malfunction detection. A single 
sensor is utilized in the majority of intricate industrial settings 
to obtain a particular piece of functional data from the 
mechanical machinery [5][6].  

The specifics of data collection may change based on the 
types of behaviors being examined in the study. For instance, 
basic actions (i.e., coarse granularity) such as sitting and 
walking may be recognized by a waist sensor with a low 
sample rate. However, a single sensor worn around the waist 
might not provide adequate performance to detect 
combinatorial actions with finer granularity, such as eating 
and driving [7]. In order to provide the elderly a feeling of 
safety and trust, it is crucial that the activities of Daily Living 

(ADL) be classified promptly and accurately. Failure to do so 
might have serious repercussions, particularly in the event of 
an emergency occurrence like a fall [8]. 

The signal is obtained by asset monitoring sensors. Data 
that is Sensor measurements and algorithm processing must 
be accurate and timely in order for informed decisions based 
on data evidence to be made. Inaccurate categorization and 
interpretation, however, can have an impact on algorithms, 
particularly if sensors, which are also susceptible to 
malfunctions, provide inaccurate data. The maintenance plan 
that is chosen is then directly impacted by accuracy, and 
indirectly [9]. The goal of this review is to describe different 
techniques for obtaining data to help with fault detection in 
machines, mainly focusing on issues of accuracy and time. 
The main purpose of analyzing existing approaches, problems 
and development is to guide both theory and practice in 
industrial maintenance and reliability engineering. 

A. Structure of the Paper 

The structure of this paper is as follows: Section II 
discusses sensor data acquisition techniques and types of 
sensors. Section III covers fault detection methods in 
mechanical systems. Section IV addresses accuracy and 
timeliness in fault diagnosis. Section V presents a literature 
review of recent advances. Section VI concludes with future 
research directions. 

II. CORE OF FAULT DETECTION IN MECHANICAL SYSTEMS 

In dependable mechanical systems, fault diagnosis and 
detection are critical issues [10][11]. It is well known that 
relying on the state estimate residuals of observers is one of 
the most popular techniques for identifying and diagnosing 
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faults. By determining whether or not the residual is zero, 
faults can be found. In this instance, the generated estimated 
residual may produce an incorrect detection result if the built 
observer is unable to appropriately estimate the states [12]. 
Gearboxes, ball-screws, hydraulic valves, and other 
components are frequently employed as actuators in 
mechanical gearbox systems. For example, in a conventional 
mechanical gearbox system, a gearbox typically drives the 
load.  A servomotor then drives the gearbox. 

A. Sensor’s Data and System Faults  

Performance is impacted by two major types of failures 
that wireless sensor nodes encounter. System problems are the 
first type. This kind occurs due to low battery conditions, 
hardware or connectivity issues, communication problems, or 
calibration [13]. The second category, data faults, includes 
substantial biased or unpredictable errors such outliers, noise, 
spikes, offset or gain, or stuck-at, when a sensor node 
functions correctly except for its sensing sample reading. If 
there is a high level of trust in the ground truth, a defect is 
often characterized as a deviation from the likely model of the 
occurrence. 

B. Mechanical Fault Detection Modern Techniques 

In order to identify machine flaws, mechanical fault 
detection (MFD) uses machine learning algorithms.  Over the 
last two or three decades, there has been a lot of interest in this 
method since it reduces the need for human involvement and 
allows for the autonomous identification of machine health 
statuses. Interestingly, review papers devoted to 
Reinforcement Learning (RL)-based methods in MFD are few 
[14][15]. The majority of current research articles do not go 
into RL; instead, they concentrate on supervised approaches 
and mention un/semi-supervised methods in passing. 

C. Types of Mechanical Faults 

Many faults can interfere with the way mechanical 
systems work and remain dependable. Faults in the machinery 
can be noticed by sensors catching abnormal vibrations. 
Reporting the kind of fault as soon as possible helps with early 
diagnosis and maintenance. Among mechanical faults [16]. 
Common ones are called unbalance, misalignment and 
mechanical looseness, and their vibration patterns allow for 
correct detection. The initial harmonics of the motor rotation 
may be used to identify the majority of mechanical issues.  
The causes of vibration brought on by mechanical issues are 
improved as follows: 

1) Unbalance 
 Asymmetry in the motor's mass around the rotating axis 

owing to asymmetries, material flaws, and manufacturing 
flaws causes the motor to become unbalanced. Manufacturing 
a motor with perfect balance is nearly impossible. The motor's 
level of imbalance determines whether or not there is an issue. 
Every time the shaft rotates, the imbalance produces a periodic 
vibration signal of the same magnitude.  The magnitude of the 
imbalance determines the vibration amplitude. 

2) Misalignments  
They are causes of the degradation of machine parts that 

happen when two machines are connected. Misalignments can 
be either angular or parallel, and occasionally they combine 
the two. When the two machines' center positions diverge, 
angular misalignment occurs. significant multiple levels of 
rotation combined with angular misalignments are reflected in 
significant axial vibrations. When both axes should operate in 

parallel, parallel misalignment occurs.  Radial vibration from 
twofold rotational speed is the predominant vibration. It may 
be horizontal or vertical. The higher-level vibration's direction 
indicates the misalignment direction. 

3) Mechanical Looseness  
The basic structure of machines cannot move freely 

because of the way they are built. Movement between the 
surfaces may come from loose screws or deteriorating 
concrete, producing harmonic peaks in vibration that oscillate 
at the same frequency as the rotation. A very little residual 
misalignment brought on by mechanical looseness may result 
in excessive vibration levels. Depending on how the back 
slash affects the rotor and structure, the frequency spectrum 
may show misalignment, a deformed shaft, and/or imbalance. 
Early on, vibrations at one rotational frequency and its double 
frequency are caused by mechanical looseness. Fractional 
harmonics become more pronounced as the motor condition 
continues to deteriorate. Signals obtained while the machine 
is just lightly loaded show these harmonics the greatest. 

III. SENSOR DATA TECHNOLOGIES FOR FAULT DETECTION  

Hardware elements known as sensors are capable of 
recording various types of signals. Sensors can be used to 
gather data in various scenarios and are commonly found in 
everyday gadgets, such as smartphones, smartwatches, tablets, 
and specialized equipment like industrial and medical devices. 
One way to use sensor data is to measure some aspect of the 
environment around the sensor, such as chemical sensing, 
motion, touch, and proximity data, or picture or sound 
detection. The design of each system, the surroundings in 
which data are collected, and the specific features of the 
sensors chosen to carry out ADL identification all influence 
data gathering. Each sensor receives electrical impulses, 
which are measured and converted into a readable format by 
a module built into the mobile device to complete the data-
collecting process [17]. 

A. Types of Sensors  

Sensors are essential to any application's automation 
because they detect changes in physical things by measuring 
and interpreting data. The sensing components and the 
corresponding electrical signal provide a measurable reaction 
whenever the physical condition for which a sensor is intended 
changes. components for sensing and the electrical signal they 
produce. Many types of sensors exist, ranging from very 
simple to quite complex. Sensors may be divided into groups 
based on their characteristics, conversion method, kind of 
material, physical phenomena they detect, characteristics they 
quantify, and field of application.  Figure 1 shows many IoT 
sensor types, which are described below. 

 

Fig. 1. Different types of IoT sensors 
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1) Proximity Sensors 
It's easy to find the location of any nearby object without 

touching it thanks to a proximity sensor. By emitting 
electromagnetic radiation, such as infrared, it determines the 
existence of an item and then just monitors any changes in the 
return signal. 

2) Motion Sensors 
A motion detector is a device that recognizes every kinetic 

and physical movement in the environment. Using motion 
sensors, an application may watch residences while the 
homeowner is away. The server can receive images or movies 
when motion is detected. 

3) Temperature Sensors 
Temperature sensors measure heat energy, which is useful 

for identifying physical changes in the body. The authors 
employed temperature sensors to track the surrounding 
environmental parameters. 

4) Chemical Sensors 
Chemical sensors react by detecting any chemical 

reaction, chemical material, or combination of chemicals.  
Environmental events, building health, agricultural 
conditions, and other things may all be detected using this kind 
of sensor [18]. 

B. Optimal Sensor Placement for Fault Detection 

Properly positioning sensors helps ensure faults in 
mechanical systems are caught early and with more accuracy. 
Good placement makes sure all-important components are 
covered but data loss is minimized. In order to find the most 
useful places for the sensors, people rely on model-based 
optimization, measuring information entropy and using modal 
analysis. Example: Adding sensors to areas where stress and 
vibrations are common enables discovering problems early 
on. Advancements in advanced algorithms like genetic 
algorithms and machine learning mean sensors in complex 
systems can be set up without manual steps [19]. If emissions 
monitoring instruments are placed correctly, fault detection 
becomes more accurate and precise and overall maintenance 
expenses and downtime are minimized which also improves 
system availability. 

C. Data Acquisition Techniques 

Systems rely on sensor data to find and fix problems in 
mechanical parts. Usually, industries select vibration, acoustic 
and temperature sensors depending on the fault being tested. 
The reliability of the data is significantly influenced by the 
proper placement and configuration of sensors, either 
individually or in groups [20]. Besides, having the right 
sampling rate, high resolution, and synchronized signals is 
essential for proper monitoring to prevent failures. Some of 
the data acquisition techniques are: 

1) Vibration Monitoring 
Vibration-based approaches are the most popular among 

the many condition monitoring techniques because they are 
easy to measure, dependable, and non-intrusive. For many 
years, vibration tracking has been used to find mechanical 
issues in instant messaging. When operating, radial magnetic 
forces that are proportional to the square of the flux density 
are generated between the rotor and stator surfaces. These 
forces cause vibrations in the motor frame, stator core, and 
winding. Vibration signals that are a result of the symmetrical 
air-gap and symmetrical components will vary when rotor, 
stator, and rolling bearing failures modify the machine's 

symmetry [21]. The majority of vibration measurements are 
often made using vibration-acceleration sensors, which 
employ the piezoelectric effect to function. The sensor's 
output voltage is determined by the force applied to it. To 
extract the important components and remove nonlinear 
effects caused by the cover frame and background noise, the 
vibration signals must be processed.  

2) Motor Current Signature Analysis (MCSA) 
The preceding mentioned approaches use either the 

transient or steady-state currents of the studied IM as data for 
MCSA. In several additional research, the steady-state current 
signature has been employed to diagnose IM defects. The fact 
that the current signature is greatly impacted by changes in 
load or speed is a significant drawback under steady-state 
conditions. In this situation, the spectra become hazy and 
traditional methods based on frequency analysis are 
ineffective. The restrictions can be addressed by analyzing the 
three-phase current signature of the IM in the transient regime. 
This is because low loads or no load are less likely to impact 
the current signal [22]. Since the initial current is seven to 
eight times greater than the steady-state current, the broken 
rotor bar fault will worsen the current variations even if a 
lesser IM is evaluated. 

3) Thermal Monitoring 
It is essential to have a solid understanding of the 

temperature of machine parts because of the thermal 
limitations of the insulations, coils, and other components of 
spinning electrical machines. Temperature measurement and 
thermal modelling are the two components of thermal 
monitoring for electrical equipment, and each has been briefly 
described [23]. A new wireless bearing temperature sensor 
was also introduced lately. This sensor detects changes in the 
magnetic field due to rising temperatures by combining a Hall 
Effect sensor with a ring-shaped permanent magnet. 

IV. ACCURACY AND TIMELINESS IN FAULT DETECTION 

Fault detection works well when the results are both 
accurate and prompt. Reliable sensor readings make sure that 
problems are identified correctly, so there are not many false 
alarms. Prompt identification of problems means equipment 
can be repaired before parts break down and the system is 
disrupted. They work as a pair to help tweak maintenance 
actions and boost efficiency of mechanical equipment. 

A. Ensuring Data Accuracy through Sensor Reliability 

The accuracy of diagnostic outcomes is directly impacted 
by feature extraction, the most crucial phase in fault diagnosis, 
which serves as the foundation for additional problem 
occurrence detection and fault type determination [24]. 
Feature extraction techniques change depending on the 
application environment for fault diagnostics.  In machine 
condition monitoring, signal data is frequently utilized to 
extract features using signal analysis techniques. These 
techniques might be in the frequency domain, time domain, or 
a mix of both. 

B. Improving Timeliness through Real-Time Fault 

Detection Systems 

The various implementation approaches are used to further 
categories RTFD methodologies, and their industrial uses are 
emphasized for analysis. Additionally, this section offers a 
thorough explanation of the RTFD procedure, including data 
gathering, preprocessing steps like dimensionality reduction 
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or denoising, if required, as well as choosing the RTFD 
technique and how it operates. 

C. Balancing Accuracy and Timeliness in Fault Diagnosis 

Both dependable and quick output are very important for 
proper functioning of fault detection systems, so a novel way 
to set adaptive thresholds in model-based systems has been 
developed. With this approach, uncertainties from the model 
and the surrounding environment are considered and optimal 
thresholds are chosen using statistical and information-theory 
tools as conditions change. By using this method, it is 
guaranteed that the system can better detect serious faults and 
reduce false alarms which enhances the system’s reliability 
and efficiency in discovering issues.  

V. LITERATURE REVIEW 

A survey of the literature on sensor data collection and 
defect detection methods for mechanical and mechatronic 
systems is included in this section, emphasizing 
synchronization, real-time monitoring, compression methods, 
and intelligent fault diagnosis. For clarity, a summary of the 
studied research is shown in Table I. 

Fei and Junmei (2025) proposed a laboratory data 
acquisition and processing system based on intelligent sensor 
networks, seeking to increase experimental data acquisition's 
accuracy and efficiency. The system collects experimental 
data in real time by deploying distributed sensor nodes, and 
uses Huffman coding algorithm for data compression and 
transmission. Huffman coding effectively reduces the amount 
of data transmission by optimizing the coding length, thereby 
improving the transmission efficiency of the system and 
saving network bandwidth. To ensure the efficient operation 
of the system, this study designs a multi-level data processing 
algorithm based on intelligent sensor networks, which can 
quickly and accurately analyze and process data after data 
acquisition, thereby realizing efficient experimental data 
monitoring and control [25]. 

Wang, Lin and Cui (2024) focused on real-time data 
acquisition and monitoring technology in mechatronic 
systems, aiming to efficiently and accurately collect and 
process temperature and pressure data in the system, and to 
accomplish real-time system status monitoring by creating a 
sensible monitoring system architecture. This study 
establishes a reliable data acquisition system by applying 
temperature sensors and pressure sensors, combining data 
acquisition modules and RS-232 transmission methods. In 

terms of data processing, the moving average method is used 
to smooth the collected data, effectively removing noise and 
outliers, and ensuring the accuracy of the data [26]. 

Jawdeh, Li and Bazzi (2024) presented approach benefits 
from the use of a machine reference model-based phase 
locked loop to determine the actual rotor position and to detect 
position sensor faults. Once the fault is detected, control 
reconfiguration is proposed to switch from sensor-based 
control to sensor less control and ensure continuous operation. 
The new approach was tested in MATLAB/Simulink 
simulations as well as experimentally. Results show effective 
and fast position sensor fault detection. Moreover, the control 
reconfiguration successfully manages to maintain seamless 
motor operation with minimum disturbances [27]. 

 Pothuri and Nagarajan (2024) introduced a novel 
Mechanical Fault Detection Network (MFD-Net) that 
enhances fault detection precision and efficiency in 
manufacturing environments. MFD- Net integrates advanced 
data preprocessing with a deep learning convolutional neural 
network (DLCNN) for effective feature extraction, paired 
with a machine learning-based Categorical Boosting (MLCB) 
classifier for optimal classification [28]. 

Malkani et al. (2023) focusing especially on WSN data 
collection. It explores several facets of query processing and 
data acquisition in WSNs and suggests an effective approach 
to data collecting that leverages the power of structured query 
language (SQL). In contrast to simulation-based evaluation, 
the proposed approach is verified on an actual sensor network 
testbed [29]. 

Guangyue et al. (2022) Synchronisation of the multi-
sensor array is a crucial element in the measuring of 
temperature gradients. This study addressed the problem of 
synchronisation in space temperature gradient measurement 
by presenting a distributed parallel data gathering method 
based on a single bus temperature sensor. A single-point 
temperature measurement device for arrays is the DS18B20 
single bus temperature sensor.  Prior to beginning the lengthy 
procedure, ID matching is completed, and then all IDs' 
temperature conversion is initiated [30]. 

Table I presents a summary of the literature review, 
highlighting each study’s focus on sensor data acquisition and 
fault detection, the methods used, key outcomes in accuracy 
and efficiency, identified limitations, and suggested 
improvements for future research. 

TABLE I.  COMPARATIVE ANALYSIS OF REVIEWED STUDY BASED ON SENSOR DATA ACQUISITION AND FAULT DETECTION  

Reference Study On Approach Key Findings Challenges Future Direction 

Fei and 

Junmei 
(2025) 

Intelligent sensor-

based lab data 
acquisition system 

Distributed sensor network 

with Huffman coding and 
multi-level data processing 

Enhanced transmission 

efficiency and accurate 
experimental data processing 

Network 

complexity, coding 
efficiency vs. 

processing load 

Optimize coding and 

processing algorithms, 
implement in real-time 

lab environments 

Wang, Lin 

and Cui, 
(2024) 

Real-time 

temperature and 
pressure monitoring 

in mechatronic 

systems 

Combination of 

temperature & pressure 
sensors, RS-232 

communication, moving 

average for noise filtering 

Real-time data acquisition 

and noise-free processing 
ensures accurate monitoring 

Handling real-time 

constraints, limited 
transmission speed 

Incorporate advanced 

filtering algorithms, 
integrate with IoT for 

remote monitoring 

Jawdeh, Li 

and Bazzi 

(2024) 

Position sensor fault 

detection and control 

reconfiguration 

Machine reference model-

based PLL, sensor less 

control upon fault detection 

Fast and effective fault 

detection, seamless control 

switch maintaining motor 

operation 

Sensor transition 

without delay, 

maintaining 

accuracy 

Apply to diverse motor 

types, explore real-time 

hardware integration 

 Pothuri 

and 

Nagarajan 
(2024) 

Mechanical fault 

detection in 

manufacturing 

MFD-Net combining 

DLCNN with MLCB 

classifier 

High accuracy in mechanical 

fault detection and 

classification 

Data quality, model 

training complexity 

Extend to multi-class 

fault detection, adapt to 

real-time applications 
 



Mrs. N. Upadhyay, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (7), July 2025, 29-34) 

© JGRMS 2025, All Rights Reserved   33 

Malkani et 
al. (2023) 

Acquisition and 
inquiry of data in 

WSNs 

SQL-based data acquisition 
on real-world WSN testbed 

Validated SQL-based 
approach enhances query 

processing and acquisition 

Resource constraints 
in WSNs, query 

complexity 

Develop lightweight 
query languages, 

optimize for large-scale 

WSNs 

Guangyue 
et al. (2022) 

Temperature 
gradient 

measurement 

synchronization 

Distributed parallel data 
acquisition using DS18B20 

single bus sensors and ID 

matching 

Achieves synchronization in 
temperature measurements by 

initiating all sensor 

conversions simultaneously 

Synchronizing 
multiple sensors on a 

single bus, latency in 

conversion 

Improve synchronization 
algorithms, scalability to 

larger sensor arrays 

VI. CONCLUSION AND FUTURE WORK 

Maintaining the effectiveness and dependability of 
mechanical systems, particularly in demanding industrial 
settings, depends heavily on sensor data collection and 
problem detection. This review explored various techniques 
and studies emphasizing synchronization, real-time data 
monitoring, and the integration of intelligent algorithms for 
enhanced fault detection. Advanced sensor networks, noise 
filtering techniques, and Models based on adaptive machine 
learning have demonstrated potential in improving the 
timeliness and accuracy of fault detection systems. However, 
challenges remain, such as data noise, synchronization delays, 
and computational limitations in real-time processing, 
hindering the full potential of these technologies in complex 
industrial setups. Enhancing the scalability and adaptability of 
data collecting systems should be the goal of future research, 
particularly in environments involving large sensor networks 
or real-time operations. The development of lightweight 
compression and transmission algorithms will also help 
optimize performance in bandwidth-constrained conditions. 
Moreover, integrating reinforcement learning and hybrid AI 
models into fault detection pipelines could provide better 
generalization across diverse machinery and fault types. There 
is also a need to enhance fault-tolerant designs for sensors 
themselves, ensuring consistent performance even in the 
presence of partial hardware failures. Advancements in these 
areas will significantly boost predictive maintenance 
capabilities and operational safety in modern industrial 
systems. 
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