
Volume (1) No (8), 2025

Journal of Global Research in Multidisciplinary Studies (JGRMS)

Review Paper/Research Paper

Available online at https://saanvipublications.com/journals/index.php/jgrms/index

© JGRMS 2025, All Rights Reserved 23

Emerging Trends and Tools in the Modern Software

Development Life Cycle: A Survey of Strategies for

Modern Engineering

Dr Chintal Kumar Patel

Associate Professor, CSE

Geetanjali Institute of Technical Studies

chintal.patel@gits.ac.in

Abstract—The Software Development Life Cycle (SDLC) has undergone dramatic change that has seen the end of rigid and linear

approaches to software development and has replaced them with dynamic and iterative approaches to software development, heavily

dependent on technology. The paper is a review of thought processes and tools that define new-fangled SDLC practice. It starts by

looking at the conventional models, including the Waterfall and V-Model, that focus on sequential development and voluminous

documentation. As the requirements of agility, speed/ agility, and customer focus have increased, approaches to meet these demands

have become more focused on Cross-functional integration, iterative delivery, and continuous integration/continuous deployment

(CI/CD), leading to the increase in the popularity of methodologies such as Agile, Scrum, and DevOps. Adoption of new technologies,

such as machine learning (ML) and artificial intelligence (AI), cloud computing, adoption, and containerization, is also discussed in

the paper and redefining the design, development, testing, and maintenance of software. There is also a focus on modern approaches

of testing, such as shift-left and shift-right testing, which improve the quality of software and increase delivery. The paper also

indicates the environmental and ethical factors that shape the sustainable practices in software engineering. This review can be of

interest to researchers, developers, and industry professionals who have to look into the future of software engineering and are

interested in receiving a complete picture of modern SDLC strategies and tools.

Keywords—Software Development Lifecycle (SDLC), Agile, DevOps, Continuous Delivery, Artificial Intelligence, Machine Learning,

Shift-Left Testing, Software Engineering.

I. INTRODUCTION

The proliferation of programmable computers in the latter
part of the 20th century led to an increase in the complexity
and variety of software systems. The pressure on software has
also increased, so now it has to be provided on a quicker note,
with greater functionality, improvement in quality and at low
costs. Conventional ways that were employed in the small-
scale projects have not been effective in large-scale system
development [1]. Consequently, different software
development lifecycle (SDLC) models have been introduced
to cover the increased complexity and changing demands of
software engineering.

The software development life cycle (SDLC) plans
proceed in sequential processes like the Waterfall model, then
to incremental and iteration models, and finally transformative
models like Agile and DevOps [2]. Iterative development has
taken center stage in current software practice, which
encourages continuous integration, delivery and feedback [3].
The newer concepts, like software architecture and
component-based development, are more and more being
incorporated into these models, to increase modularity and re-
usability.

Another important aspect of contemporary SDLC is its
ecological consideration. The computer software sector is also
part of the global carbon footprint in the emissions of data
centers and e-waste [4]. These difficulties are further
complicated by the exponential increase in digital
technologies. Not only is it a moral requirement, but also a
strategic need, to seek answers to these environmental

concerns, which is compelling organizations to adopt
sustainable engineering practices and minimize their
ecological footprint.

Artificial intelligence (AI) technologies are transforming
the process of developing software by enhancing certain
lifecycle characteristics. Predictive analytics and anomaly
detection can be made possible through Machine Learning
(ML), helping teams detect a problem early. Natural Language
Processing (NLP) makes the process of requirement gathering
efficient through translating user input into tasks [5]. While
less widespread, Specialized area like automated UI design
and image-based test coverage are also backed by Computer
Vision. Next to AI, search-based software engineering
(SBSE) has also come to prominence [6]. Genetic
programming, simulated annealing, local search, and genetic
algorithms are popular optimization methods of solving
complex software engineering problems [7]. These
approaches provide effective means of test case generation,
estimate effort, refactoring, and resource distribution.

The scene of software development is changing due to the
incorporation of higher lifecycle concepts, tools based on AI,
and environmentally-friendly engineering [8]. These
developments are essential to meeting the changing needs of
modern systems, as well as the fact that software development
is efficient, conscientious, and futuristic.

A. Structure of the Paper

The paper is organized as follows: Section I, the evolution
of SDLC is introduced. Section II, the author discusses the
traditional and contemporary SDLC models. Section III, new

https://saanvipublications.com/journals/index.php/jgrms/index

Dr C. K. Patel, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (8), August 2025, 23-29)

© JGRMS 2025, All Rights Reserved 24

trends and tools such as AI, ML, DevOps, and shift-left/ right
testing are mentioned. Section IV talk is about modern
engineering strategies. Section V, a literature review on the
main developments in the domain is conducted. The last
section VI which provides further study directions at the end
of the paper.

II. SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

The Software Development Life Cycle (SDLC) is a
structured model that explains the steps necessary to produce
a software product. The classical SDLC models need to follow
a straight and systematic process with a great deal of planning,
documentation and well-defined stages. These models have
largely played a major role in software engineering in giving
a regulated path to software development. They provide a
graphical and formal representation of the whole cycle of
software, all of the tasks required to finish a software product's
lifecycle, to his ultimate end of life [9]. Essentially, SDLC
frameworks coordinate all the processes inclusive of
requirement capture, design, implementation, testing,
deploying and maintaining the product to have uniformity and
quality in the development lifecycle of the product [10]. As
illustrated in Figure 1, the SDLC phases are multifarious.

Fig. 1. Software Development Life Cycle (SDLC) phases

A. Traditional Software Development Life Cycle (SDLC)

Models

Traditional SDLC models are characterized by a
systematic and sequential method in which every step must be
completed before proceeding to the next. These models were
among the earliest attempts to formalize the software
engineering process and have laid the foundation for many of
the methodologies used today. Some of the most widely
recognized traditional SDLC models include:

1) Waterfall Model
A linear sequential SDLC technique, the waterfall model

was initially introduced by Royce in 1970 [11]. The phases of
design, coding, testing, and requirements analysis, and
execution are followed in such a way that, once finished, a
phase is not repeated and development does not proceed to the
next step until the previous phase is finished. Figure 2
therefore illustrates the Waterfall SDLC paradigm in
situations when the project requirements are changeable.

Fig. 2. Waterfall SDLC model

2) V-Shape Model
The Verification and Validation model is referred to as the

V-model. Processes are carried out sequentially in the V-
Shaped lifecycle, much like in the waterfall paradigm. Before
moving on to the next phase, each must be finished [12]. The
model with a V-shape is illustrate in Figure 3 below, and
product testing is scheduled concurrently with a comparable
phase of development:

Fig. 3. V Shaped Model

3) Iterative Model
The iterative approach addresses the shortcomings of the

waterfall paradigm. In contrast with the waterfall approach,
which only requires requirements once, the iterative
methodology collects requirements at each stage. The project
is divided into smaller components so that the results may be
used to the next phase [13]. After every increment, the client's
input is gathered and utilized to build the next step. and make
adjustments (Figure 4 illustrates the iterative model). At each
stage, a new software version is created and repeated until the
entire system is prepared.

Fig. 4. Iterative Models

Dr C. K. Patel, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (8), August 2025, 23-29)

© JGRMS 2025, All Rights Reserved 25

B. DevOps and Continuous Delivery

DevOps is the theoretical study of software development
and delivery to infrastructure using an integrative and
cooperative methodology between software operations (Ops)
and developers (Dev). DevOps is an organizational strategy
that aims to foster empathy, communication, and cooperation
across departments and divisions [14]. The use of DevOps is
one way to improve IT team cooperation, which is crucial for
software development and maintenance [15].In general,
continuous delivery consists of a few essential procedures.
One involves developers segmenting their work into minor
updates or modifications that are applied to the mainline or
trunk in version control. Automated tests provide developers
with quick feedback within minutes of committing a change,
which is another crucial component [16]. Rapid feedback and
learning are made possible by automated testing, which gives
developers the chance to address issues as soon as they arise.
Continuous integration is the term used to describe these
methods used together. Subsequent procedures including
thorough automated acceptance testing, manual exploratory
testing, and performance testing are initiated if the build and
tests are successful. These depend on the software's automated
deployment to an environment generated from version control
system-stored system and application configuration data.

C. Limitations and Challenges in SDLC

Software development may be approached methodically
and systematically with the help of standard SDLC models,
they exhibit several inherent limitations that make them less
suitable for modern, dynamic development environments
[17]. The key challenges include:

• Inflexibility in changing traditional models,
particularly linear ones like the Waterfall model, lacks
the flexibility to accommodate evolving
requirements. It becomes challenging and expensive
to go back and change earlier stages after a phase is
finished. This rigidity can result in software products
that do not fully meet stakeholder needs by the time
of delivery.

• Delayed Testing and Feedback Testing in
conventional models typically occurs after the
implementation phase, which delays the identification
and resolution of defects. This late validation raises
the possibility of finding important problems at the
end of the development cycle, increasing the cost and
duration of remediation.

• Limited Stakeholder Involvement Traditional SDLC
models often minimize stakeholder and end-user
involvement during development. Feedback is
usually collected only during the requirements and
final testing phases. This limited engagement can lead
to misinterpretation of user expectations and a final
product that lacks user-centric functionality.

• Overhead in Documentation These models place
significant emphasis on exhaustive documentation at
each phase. While documentation is important, an
overreliance on it can shift focus away from working
software. Maintaining and updating extensive
documentation also demands substantial time and
resources.

III. EMERGING TRENDS AND TOOLS IN SOFTWARE

ENGINEERING

The dynamics of software engineering are changing fast,
owing to breaking technology and the complexity of systems
and the need to have faster and more dependable software
production. Emerging trends such as DevOps, shift-left and
shift-right testing, microservices architecture, and AI/ML
integration are reshaping traditional software development
practices [18]. Tools that facilitate containerization (e.g.,
Docker, Kubernetes), Continuous integration and deployment
(CI/CD) and infrastructure as code (IaC), and observability
(e.g., Prometheus, Grafana) have become essential in modern
development workflows [19]. The trends are focused on
automatizing, collaboration, early defect identification and
real-time feedback, ultimately resulting in better software
quality, a quicker time to market, and easier maintainability.
With the software engineering sector perpetually adjusting to
the ever-evolving digital environment, adopting the trends of
the present and utilizing the modern tools is essential in the
development of scalable, secure, and resilient systems.

A. Shift-Left and Shift-Right Testing

The Shift-Right and Shift-Left testing practices make a
complete software testing strategy when incorporated
together. The shift-left testing methodology, which includes
UX review, unit testing, code reviews, test automation, and
performance benchmarking, is used for remedial testing,
which tries to find and stop flaws early in the product lifecycle.
In this manner, teams may identify and address issues as they
arise during the initial stages of growth, lowering the
likelihood of later, more significant problems. Testing,
Conversely, Shift-Right testing is carried out following
deployment and entails evaluating the program in real-world
circumstances [20]. In an effort to quickly identify and address
any issues that may arise in production, this includes gathering
user input, performance analysis, and logs. By combining the
two approaches, the organizations are able to obtain a
comprehensive Image of product quality. Figure 5 indicates
Shift-Left testing (early defect prevention) and Shift-Right
testing (post-release validation) to enhance software quality
throughout the SDLC.

Fig. 5. Comparison of Shift-Left and Shift-Right Testing Activities

B. AI and ML in Software Development

The software development process has undergone
significant change as a result of AI technologies, which have
made several procedures more effective and efficient. AI is
employed in many areas, one of which is automated coding.
Code recommendations are given in context by tools like
GitHub Copilot, which helps engineers create code more
quickly and with fewer errors. These development tools
facilitate this process by analyzing and suggesting suitable
snippets to be deployed in existing codebases. Quality control

Dr C. K. Patel, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (8), August 2025, 23-29)

© JGRMS 2025, All Rights Reserved 26

and testing are additional crucial areas [21]. It may be possible
to increase the test process's precision and effectiveness by
strategically developing and executing test cases using AI-
based automated testing frameworks. Tools like Test might be
mentioned as an example. Through early issue discovery in
the development phase, machine learning enhances software
dependability and assists AI in identifying and prioritizing
testing scenarios so that developers may focus on high-priority
features of their product.

Predictive analytics with machine learning (ML)
algorithms allow a team to analyze data, identify patterns, and
make prediction-based choices, they have become a crucial
component of software projects. The three main categories of
these algorithms are reinforcement learning, unsupervised
learning, and supervised learning. learning while being
watched over. Both the input data and the right response are
known since the algorithms employed in supervised learning
are trained using labelled data. The most often used ones are
support vector machines, decision trees, and linear regression.

C. Cloud-Native and Serverless Architectures

Modern application development in Cloud environments
is using serverless and cloud-native designs more and more to
improve efficiency, scalability, and agility. Cloud-native
approaches utilize technologies such as Using containers,
microservices, and orchestration technologies (like
Kubernetes) to create robust, modular applications that can
rapidly adapt to change [22]. Serverless architecture, on the
other hand, emphasizes event-driven computing, where cloud
service providers scale apps dynamically in response to
demand and manage infrastructure. Unlike traditional IaaS
models that require upfront provisioning of resources,
serverless applications run in lightweight containers that are
triggered only when needed, reducing both operational
overhead and costs. This model abstracts infrastructure
concerns, freeing developers from tasks like server
management, patching, scaling, logging, and monitoring. It
supports seamless integration with other cloud services and
accelerates deployment cycles [23]. Serverless applications
can be built entirely using serverless functions or as hybrids
incorporating traditional microservices, enabling flexible and
efficient cloud solutions. Figure 6 shows a serverless
architecture where events from the UI, API Gateway, and
Cloud Event Sources are queued and dispatched to worker
nodes for execution. Each worker runs isolated functions,
enabling scalable and event-driven processing.

Fig. 6. Serverless Architecture

IV. STRATEGIC APPROACHES IN MODERN ENGINEERING

In order to support an organization's goals, strategic
management is the art and science of creating, executing, and
assessing cross-functional choices. Strategic management is

the ongoing process of creating, implementing, and
supervising broad plans that guide the organization in
achieving its strategic goals in light of the internal and external
environment [24]. Strategic planning is used by organizations
to support strategic management. Strategic planning analyses
the organization and its surroundings to develop strategies that
produce more effective and efficient outcomes, such as
enhancing current conditions, resources, and capacities to gain
a competitive edge [25]. The strategic planning process's two
main goals are generally developing strategies and choosing
the best one from a variety of possibilities to accomplish the
goals of the organization.

A. Agile and Scrum Practices

Agile methodologies have emerged as a dominant
paradigm in modern software engineering, particularly for
projects characterized by dynamic requirements and
technological uncertainty [26]. The following key practices
summarize the core principles and practical implementations
of Agile and Scrum approaches, especially within distributed
development contexts.

• Suitability of Agile for Uncertain and Evolving
Projects: Agile methods are ideal for projects with
uncertain scope, evolving technologies, and
frequently changing requirements. Their flexibility
and iterative nature make them especially suitable for
Distributed Software Development (DSD), where
adaptability is essential.

• Agile in Distributed Development: Tailored Agile
practices enable effective coordination among remote
teams, supporting asynchronous collaboration
through digital tools. Frameworks like Scrum help
overcome challenges related to time zones, cultural
differences, and geographical dispersion.

• Scrum in Co-located Teams; Traditionally, Scrum has
been used in small, co-located teams, where informal
communication and rapid feedback enhance cohesion
and iterative progress.

• Evidence of Scrum in DSD: Studies confirms
successful Scrum adoption in distributed settings,
highlighting benefits like improved transparency,
team alignment, and stakeholder engagement.

• Inspect-and-Adapt Principle: Scrum promotes
continuous improvement through regular inspection,
adaptation, and feedback, ensuring responsiveness to
change and iterative progress.

Agile, especially Scrum, suits uncertain and evolving
projects like distributed software development. It supports
flexibility, collaboration, and iterative delivery. While
originally for small co-located teams, Scrum scales well for
distributed teams using frameworks like SAFe. Studies show
it improves transparency, team alignment, and adaptability
through its core components and continuous improvement
approach.

B. Site Reliability Engineering (SRE)

Software engineering and systems administration are
combined in site reliability engineering (SRE), a cutting-edge
field that guarantees the availability, performance, and
dependability of large-scale systems [27]. Developed at
Google, SRE focuses on using engineering principles to
manage and automate operational tasks traditionally handled
by operations teams. This method places a strong emphasis on
using software to increase systems' dependability and

Dr C. K. Patel, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (8), August 2025, 23-29)

© JGRMS 2025, All Rights Reserved 27

effectiveness, transforming the conventional role of system
administrators into that of software engineers focused on
operational excellence, as shown as Figure 7.

Fig. 7. Key Principles of Site Reliability Engineering (SRE)

The 7 pillars of Site Reliability Engineering (SRE) form
the basis of SRE's fundamental philosophy. These include:
Embrace Risk, Release Engineer, Automate, Monitor
Distributed Systems, Eliminate Toil, Embrace Risk, and
SLOs. Together, these principles guide the practices and
mindset of SRE teams, emphasizing system reliability,
scalability, efficiency, and continuous improvement in
managing complex software systems.

C. Infrastructure as Code (IaC)

IaC is the process of writing textual descriptions of
computer systems that are readable by machines, usually in
the cloud, that can be run automatically. IaC scripts may be
written in domain-specific languages on IaC systems as well
as virtualization tools and plugins for cloud service provider
integration [28]. Different deployment steps are covered by
various IaC tools. Computing node software configuration is
managed by tools like Ansible, Chef, and Puppet. They are
able to deploy, configure, and manage containers and
applications. Consequently, they frequently facilitate the
embedding of shell scripts and other system configuration
languages. The activities needed to achieve the desired
configuration are clearly described by Ansible and Chef
scripts, which may be regarded as imperative, whereas Puppet
expresses them declaratively. Puppet actions are idempotent,
meaning that doing them again, whatever many times, has the
identical consequences as performing them only once.

D. Data-Driven Decision Making in SDLC

A deliberate change towards using historical and real-time
data to inform each stage of contemporary software
engineering is represented by data-driven decision making
(DDDM) in the Software Development Life Cycle (SDLC).
Evaluating user behavior metrics, feature usage metrics, bug
trends, and project performance, teams can prioritize
requirements, predict the effort that is needed to develop with
accuracy, and predict risks early, and customize the testing
strategies to focus on the riskiest components. Combining the
predictive analytics and machine learning allows making
better estimations and effective resource distribution. One-on-
one monitoring with the assistance of such tools as
Application Performance Monitoring (APM) can guarantee
the swift feedback loops in terms of performance tuning and

improvement of quality. Moreover, Data stored on CI/CD
pipelines and user-centric design insights based on behavioral
analytics are becoming the basis of making deployment
decisions. DDDM, in general, helps to increase the level of
decision accuracy, faster development, increased product
quality, and flexibility to adjust to consumers' and businesses'
evolving demands.

V. LITERATURE REVIEW

The Literature Review section is a summary of recent
developments in SDLC particularized into security
integration, dependability, environmental impact, cross-
domaining, testing, and integrating the ML in various
development phases.

Saeed et al. (2025) is to analyze the latest advancements in
the SDLC's security integration field by examining
publications written over the past 20 years and suggesting
future directions. Planning, execution, and analysis are the
three primary phases of the study. It is clear from these that a
team effort is required to handle significant software security
risks (CSSRs) using efficient risk management and estimating
methods. By employing a numerical scale to quantify hazards,
a thorough grasp of their seriousness may be obtained, which
helps with targeted resource allocation and successful
mitigation initiatives. By means of a thorough comprehension
of possible weaknesses and Through protection poker-enabled
proactive mitigation strategies, organizations may effectively
deploy resources to ensure project and activity completion in
a dynamic threat environment [29].

Yu and Yang (2024) analyzes the meaning of
dependability life cycle, and on the basis of introducing the
existing system, data and product life cycle models, constructs
the system dependability life cycle model, including concept,
development, realization, utilization and retirement/re-use of
five life cycle stages. Considering the wide application of
software system, the dependability life cycle model of
software system is further studied and established. It is
possible to foster the realization of system dependability and
generate dependability value by implementing dependability
activities at every stage of the system life cycle [30].

Simon et al. (2023) Consequently, provide a technique and
related model to help stakeholders and the software
development ecosystem estimate the environmental effect of
their projects across a number of impact categories. A sample
case study illustrates the significance of development
influence on a software life cycle as well as the relative value
of phases and resources used. This all-encompassing method
provides useful insights to recognize possible transitions
between stages, such as creation and consumption, and
hotspots among the resources used to create and run software
services [31].

Lee et al. (2023) An international standard for the
functional safety of electrical and electronic systems installed
in road vehicles, ISO26262/A-SPICE, and DO-178C, a
software consideration in airborne systems and equipment
certification, were compared in order to assess the
applicability of software (SW) technologies accumulated in
automobiles to aviation. A handbook was suggested to help
software engineers in the automotive and aviation industries
better understand one another. An analysis was carried out to
compare the two viewpoints: the delivery perspective and the
process perspective. Elements of consistency, similarity, and
inconsistency were categorized after the goals and operations

Dr C. K. Patel, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (8), August 2025, 23-29)

© JGRMS 2025, All Rights Reserved 28

of DO-178C were examined and contrasted with ISO26262
from a process standpoint [32].

Gupta and Gayathri (2022) Software testing is carried out
to make software stronger and to stop issues. An integral and
vital component of the testing stage of the software
development life cycle. However, each association has a
different way of finishing it altogether. Development now
includes software testing, and it is better to begin testing early
to prevent issues by addressing defects early. Furthermore,
testing is done to enhance unwavering quality, execution, and
other important elements that can be classified as SRS
throughout the whole software development lifecycle. The
SDLC is a comprehensive methodology that outlines the steps
involved in designing, developing, and maintaining a
particular software product. The organizational structure

provides an explanation of each stage of the software
development process [33].

Mashkoor et al. (2021) At many phases of the software
development life cycle, ML research is utilised. In order to
answer the question of whether ML prefers particular stages
and techniques, the article's overall goal is to examine the
relationship between the stages of the software development
life cycle and the types, instruments, and techniques of
machine learning. ML is being quickly adopted by the
software engineering community to move contemporary
software towards very intelligent and self-learning systems
[34].

Table I provides the literature on Data Validation
Techniques in Distributed Databases Used by Web-Based
Systems, including important results, difficulties, and future
prospects of the study.

TABLE I. LITERATURE REVIEW ON EMERGING TRENDS AND TOOLS IN THE MODERN SOFTWARE DEVELOPMENT LIFE CYCLE

Author Study On Approach Key Findings Challenges Future Directions

Saeed et al.

(2025)

Security

integration in

the Software
Development

Life Cycle
(SDLC)

Systematic review of

100 articles (2005–

2025); staged
approach: planning,

execution, analysis

Emphasizes the need for collaborative

approaches to address Critical

Software Security Risks (CSSRs);
quantification of risks using numeric

scales; highlights tools like Protection
Poker for risk prioritization

Lack of unified

methods for risk

quantification;
difficulty integrating

security seamlessly
into SDLC phases

Develop automated threat

analysis and security testing

tools; promote proactive
risk estimation and

mitigation practices

Yu and

Yang

(2024)

System

dependability

life cycle model

Construction of a

dependability life

cycle model

Proposed a comprehensive model

including five stages: concept,

development, realization, utilization,
retirement/reuse, enhancing system

dependability.

Integrating

dependability

activities
consistently across

life cycle phases.

Broaden application to

diverse software systems to

create continuous
dependability value.

Simon et al.
(2023)

The
environmental

impact of

software
development

Holistic
methodology and

impact model

Developed a methodology to estimate
environmental footprint across

software life cycle phases; revealed

hidden costs and key consumption
hotspots.

Lack of awareness
and tools for

environmental

evaluation in SDLC.

Encourage sustainability-
driven design decisions and

integrate into DevOps

workflows.

Lee et al.

(2023)

Cross-domain

applicability of

SW safety
standards

Comparative study

between DO-178C

and ISO26262/A-
SPICE

Provided a bridge between automotive

and aviation software practices by

identifying similarities and
inconsistencies.

High complexity in

aligning domain-

specific standards.

Develop unified

frameworks for cross-

industry collaboration and
certification.

Gupta and

Gayathri
(2022)

Importance of

early testing in
SDLC

Review of software

testing practices
across organizations

Emphasized shift-left testing,

improving quality and performance
when testing starts early in the cycle.

Variability in testing

methods across
organizations.

Promote standardized shift-

left testing practices across
industries.

Mashkoor

et al. (2021)

Machine

learning in

SDLC

Investigation of ML

tools across SDLC

phases

Demonstrated increasing use of ML for

automation, predictive analytics, and

decision support in development
stages.

Identifying suitable

ML models for each

SDLC phase.

Advance AI/ML integration

for autonomous and

intelligent software
development environments.

VI. CONCLUSION AND FUTURE WORK

The evolution of software development lifecycle (SDLC)
models has progressed from traditional, linear approaches
such as the Waterfall and V-Model to modern, adaptive
methodologies like Agile, DevOps, and Continuous Delivery.
It also explored the impact of emerging technologies,
including AI, ML, cloud-native architectures, and complex
testing techniques like shift-left and shift-right testing. These
advancements are meant to increase software quality, expedite
delivery, and simplify processes. Even with these
developments, there are still issues. Among the primary
limitations, one must state that no one particular SDLC
framework can apply to every type of project and field. Also,
the deliberate use of novel solutions, like the integration of AI
and automation of DevOps processes, involves similarly high-
competence employees, which becomes a problem when
smaller organizations or teams with less technical background
are to implement it.

The future work is to develop hybrid and customizable
SDLC frameworks that are flexible to any project

specifications and industrial requirements. It is necessary to
create simple, automated solutions that allow non-expert users
to use AI and ML technologies more frequently as well.
Moreover, software development should also pay more
attention to sustainability being concerned about energy-
efficient algorithms, sustainable coding, and reducing carbon
footprint of large systems. Finally, additional empirical, cross-
industry research is required to assess the on-the-job efficacy
and investment payback (ROI) of the current tools and
techniques across the different organizational contexts.

REFERENCES

[1] K. Kyeremeh, “Overview of System Development Life Cycle
Models,” SSRN Electron. J., 2019, doi: 10.2139/ssrn.3448536.

[2] A. Atadoga, U. J. Umoga, O. A. Lottu, and E. O. Sodiya, “Tools,

techniques, and trends in sustainable software engineering: A

critical review of current practices and future directions,” World J.
Adv. Eng. Technol. Sci., vol. 11, no. 1, pp. 231–239, Feb. 2024,
doi: 10.30574/wjaets.2024.11.1.0051.

[3] V. Prajapati, “Advances in Software Development Life Cycle
Models : Trends and Innovations for Modern Applications,” J.
Glob. Res. Electron. Commun., vol. 1, no. 4, pp. 1–6, 2025.

Dr C. K. Patel, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (8), August 2025, 23-29)

© JGRMS 2025, All Rights Reserved 29

[4] R. Patel and P. B. Patel, “The Role of Simulation & Engineering
Software in Optimizing Mechanical System Performance,” TIJER
– Int. Res. J., vol. 11, no. 6, pp. 991–996, 2024.

[5] S. Rongala, S. A. Pahune, H. Velu, and S. Mathur, “Leveraging

Natural Language Processing and Machine Learning for

Consumer Insights from Amazon Product Reviews,” in 2025 3rd
International Conference on Smart Systems for Applications in

Electrical Sciences (ICSSES), 2025, pp. 1–6. doi:
10.1109/ICSSES64899.2025.11009528.

[6] N. Upadhyaya, “The Role of Artificial Intelligence in Software

Development: A Literature Review.” pp. 1–5, 2022. doi:
10.13140/RG.2.2.12291.92965.

[7] M. Harman, S. A. Mansouri, and Y. Zhang, “Search Based

Software Engineering : A Comprehensive Analysis and Review of
Trends Techniques and Applications,” 2009.

[8] Z. Wang, B. Li, and Y. Ma, “An Analysis of Research in Software
Engineering : Assessment and Trends,” pp. 1–25, 2014.

[9] D. Patel, “Zero Trust and DevSecOps in Cloud-Native

Environments with Security Frameworks and Best Practices,” Int.
J. Adv. Res. Sci. Commun. Technol., vol. 3, no. 3, 2023.

[10] B. Acharya and K. Sahu, “Software Development Life Cycle

Models: A Review Paper,” Int. J. Adv. Res. Eng. Technol., vol. 11,
no. 12, pp. 169–176, 2020, doi:
10.34218/IJARET.11.12.2020.019.

[11] A. Mishra and D. Dubey, “A Comparative Study of Different

Software Development Life Cycle Models in Different Scenarios,”

Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 1, no. 5, pp. 2321–
7782, 2013.

[12] S. S. Kute and S. D. Thorat, “A Review on Various Software
Development Life Cycle (SDLC) Models,” Int. J. Res. Comput.
Commun. Technol., vol. 3, no. 7, pp. 776–781, 2014.

[13] G. Gurung, R. Shah, and D. P. Jaiswal, “Software Development
Life Cycle Models-A Comparative Study,” Int. J. Sci. Res.
Comput. Sci. Eng. Inf. Technol., 2020, doi: 10.32628/cseit206410.

[14] M. H. R. Istifarulah and R. Tiaharyadini, “DevOps, Continuous

Integration and Continuous Deployment Methods for Software

Deployment Automation,” JISA(Jurnal Inform. dan Sains), vol. 6,
no. 2, pp. 116–123, 2023, doi: 10.31326/jisa.v6i2.1751.

[15] G. Modalavalasa, “The Role of DevOps in Streamlining Software

Delivery: Key Practices for Seamless CI/CD,” Int. J. Adv. Res. Sci.
Commun. Technol., vol. 1, no. 12, pp. 258–267, Jan. 2021, doi:
10.48175/IJARSCT-8978C.

[16] Y. SKA and J. P, “A Study and Analysis of Continuous Delivery,

Continuous Integration in Software Development Environment,”
J. Emerg. Technol. Innov. Res., vol. 6, no. 9, pp. 96–107, 2019.

[17] A. Goyal, “Optimising Cloud-Based CI/CD Pipelines: Techniques

for Rapid Software Deployment,” Tech. Int. J. Eng. Res., vol. 11,
no. 11, pp. 896–904, 2024.

[18] S. Laato, M. Mäntymäki, A. K. M. N. Islam, S. Hyrynsalmi, and

T. Birkstedt, “Trends and Trajectories in the Software Industry:
implications for the future of work,” Inf. Syst. Front., vol. 25, no.

3, pp. 929–944, Apr. 2022, doi: 10.1007/s10796-022-10267-4.

[19] A. Goyal, “Optimising Software Lifecycle Management through

Predictive Maintenance : Insights and Best Practices,” Int. J. Sci.
Res. Arch., vol. 07, no. 02, pp. 693–702, 2022.

[20] P. Purushothaman, “Beyond Deployment: Unveiling the

Dynamics of Shift-Right Testing,” Int. J. Comput. Trends
Technol., vol. 72, no. 2, pp. 22–26, 2024, doi:

10.14445/22312803/ijctt-v72i2p104.

[21] H. Hourani, A. Hammad, and M. Lafi, “The impact of artificial

intelligence on software testing,” 2019 IEEE Jordan Int. Jt. Conf.

Electr. Eng. Inf. Technol. JEEIT 2019 - Proc., pp. 565–570, 2019,
doi: 10.1109/JEEIT.2019.8717439.

[22] V. Prajapati, “Cloud-Based Database Management: Architecture,

Security, challenges and solutions,” J. Glob. Res. Electron.
Commun., vol. 01, no. 1, pp. 07–13, 2025.

[23] S. V. Srivastava and S. Bhosale, “DevSecOps in Cloud-Native and
Serverless Architectures,” 2023.

[24] H. de S. Andrade and G. Loureiro, “A Comparative Analysis of

Strategic Planning Based on a Systems Engineering Approach,”
Bus. Ethics Leadersh., vol. 4, no. 2, pp. 86–95, 2020, doi:
10.21272/bel.4(2).86-95.2020.

[25] S. P. Kalava, “Enhancing Software Development with AI-Driven

Code Reviews,” North Am. J. Eng. Res., vol. 5, no. 2, pp. 1–7,

2024.

[26] E. Hossain, M. A. Babar, and H. Y. Paik, “Using scrum in global

software development: A systematic literature review,” Proc. -

2009 4th IEEE Int. Conf. Glob. Softw. Eng. ICGSE 2009, no. May
2014, pp. 175–184, 2009, doi: 10.1109/ICGSE.2009.25.

[27] C. Mokkapati, S. Jain, and S. Jain, “Enhancing Site Reliability
Engineering (SRE) Practices in Large-Scale Retail Enterprises,”

Int. J. Creat. Res. Thoughts (IJCRT, vol. 9, no. 11, pp. 870–886,
2021.

[28] M. Chiari, M. De Pascalis, and M. Pradella, “Static Analysis of

Infrastructure as Code: A Survey,” 2022 IEEE 19th Int. Conf.
Softw. Archit. Companion, ICSA-C 2022, pp. 218–225, 2022, doi:
10.1109/ICSA-C54293.2022.00049.

[29] H. Saeed, I. Shafi, J. Ahmad, A. A. Khan, T. Khurshaid, and I.
Ashraf, “Review of Techniques for Integrating Security in

Software Development Lifecycle,” Comput. Mater. Contin., vol.
82, no. 1, pp. 139–172, 2025, doi: 10.32604/cmc.2024.057587.

[30] M. Yu and C. Yang, “Research on dependability life cycle model

for software system,” in 2024 5th International Conference on
Computer Engineering and Application (ICCEA), 2024, pp. 489–
493. doi: 10.1109/ICCEA62105.2024.10604201.

[31] T. Simon, P. Rust, R. Rouvoy, and J. Penhoat, “Uncovering the
Environmental Impact of Software Life Cycle,” in 2023

International Conference on ICT for Sustainability (ICT4S), 2023,
pp. 176–187. doi: 10.1109/ICT4S58814.2023.00026.

[32] D. Lee, J. Baek, D. Kim, H. Kim, K. Park, and J. Lee, “Adopting

automotive software technology to aviation through a comparative
analysis of software development standards,” in 2023 IEEE/AIAA

42nd Digital Avionics Systems Conference (DASC), 2023, pp. 1–
4. doi: 10.1109/DASC58513.2023.10311335.

[33] S. Gupta and N. Gayathri, “Study of the Software Development

Life Cycle and the Function of Testing,” in International

Interdisciplinary Humanitarian Conference for Sustainability,

IIHC 2022 - Proceedings, 2022. doi:
10.1109/IIHC55949.2022.10060231.

[34] S. Shafiq, A. Mashkoor, C. Mayr-Dorn, and A. Egyed, “A

Literature Review of Using Machine Learning in Software

Development Life Cycle Stages,” IEEE Access, vol. 9, pp.
140896–140920, 2021, doi: 10.1109/ACCESS.2021.3119746.

