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Abstract—The rapid development of Industry 4.0 has transformed industrial systems because it has allowed the use of data-driven 

solutions to monitor equipment and prevent faults. Predictive maintenance (Pd.M.), which utilizes advanced analytics and uses 

artificial intelligence to predict when a breakdown is likely to happen, is becoming more and more prevalent in the industry, in 

addition to more traditional methods like reactive and preventative maintenance.  Pd.M. can utilize event logs, control systems, and 

real-time sensor data streams to enhance equipment availability, minimize downtime, and allocate resources as efficiently as possible.  

Strong anomaly detectors, defect classifiers, and Remaining Useful Life (RUL) predictions may be obtained using machine learning 

(ML) and deep learning (DL) models, which are regarded as crucial tools in Pd.M. Across a range of industrial situations, Random 

Forest (RF) methods, Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Recurrent Neural Networks 

(RNN) may be applied with great predictive flexibility. Additionally, scalability, efficiency, and sustainability are improved in 

contemporary operations through integration with digital twins, the Industrial Internet of Things (IIoT), and quantum-enhanced 

techniques. These developments notwithstanding, there are still challenges, including low data quality, heavy computing 

requirements, and barriers to adoption by organizations. However, with the further implementation of smart PdM systems, 

operational efficiency can be enhanced, safety can increase, and sustainable industrial growth can be achieved, marking a crucial 

step toward smarter and healthier industrial ecosystems. 
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I. INTRODUCTION 

The emergence of Industry 4.0 or the Fourth Industrial 
Revolution has revolutionized the behaviour of industry by 
being connected, with huge data sets, smart devices, tailoring, 
and automatically controlled production processes [1]. Under 
this new paradigm, maintenance strategies now extend beyond 
traditional Run-to-Failure (R2F) and Preventive Maintenance 
(PvM) models to more current Predictive Maintenance (PdM) 
models. The least complex is R2F, or corrective maintenance, 
which is done exclusively after the equipment malfunctions, 
resulting in an expensive cost of downtime. PvM, on the other 
hand, implements interventions with pre-determined intervals 
to stop the breakdown, but often causes unnecessary repairs 
and heightened costs [2]. PdM mitigates these constraints 
through ongoing monitoring of equipment status and the use 
of statistical inference, domain knowledge, and ML methods 
to detect patterns of degradation, thereby identifying the 
optimal time for a maintenance operation. Through upstream 
planning of failures, PdM saves time through advance 
planning, facilitates cost-reduction in operations and 
encourages the sustainability of production activities [3]. 

The opportunities provided by increasing access to real-
time data about industrial processes have facilitated 
implementing machine learning (ML) and deep learning (DL) 
into PdM. RF, LR, SVM, and DT are examples of traditional 
ML techniques. These all utilize manually generated time, 
frequency, and time–frequency domain characteristics to 
operate.  In contrast, DL models—such as LSTM networks, 

RNN, and CNN—can automatically identify hierarchical 
representations in unprocessed sensor data and facilitate end-
to-end prediction [4]. Although DL eliminates the need for 
sophisticated feature engineering, its models can be 
considered black boxes due to poor interpretability. However, 
both ML and DL methods have already demonstrated high 
predictive maintenance potential and have been increasingly 
adopted into production systems, making them, as such, at the 
core of the new era of intelligent manufacturing. 

The aim of the article is to give a step-by-step overview of 
ML techniques employed in Predictive industrial system 
maintenance. The objective is to describe the available 
methods, address their advantages and disadvantages, and 
propose research opportunities in future studies to enhance 
reliability and efficiency in industry. 

A. Structure of the Paper 

The structure of this paper is as follows: Section II 
introduces predictive maintenance strategies in Industry 4.0. 
Section III explains data sources and pre-processing. Section 
IV discusses ML and DL techniques. Section V presents a 
detailed literature review. Section VI provides conclusions 
and future research directions. 

II. FUNDAMENTALS OF PREDICTIVE MAINTENANCE 

Predictive Maintenance (PdM) has transitioned from 
conventional methods, which primarily rely on Condition-
based maintenance methods include Preventive Maintenance 
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(PM) and Reactive Maintenance (RM) [5]. PdM seeks to save 
operating costs, increase equipment availability, prolong its 
useful life, and improve employee safety by predicting failures 
and continuously monitoring mechanical assets. PdM utilizes 
a wide variety of data streams, despite the obstacles of cost 
and integration. To deliver dependable prediction capabilities 
and connect maintenance tasks with organizational objectives 
in Industry 4.0, AI-based PdM utilizes sensors, data 
preparation, algorithms, communication, decision-making, 
and human-computer interfaces. 

A. Types of Maintenance 

Maintenance strategies efficiency. Traditionally, many 
systems, such as power grids or data centres, relied on manual 
tracking utilizing spreadsheets or paper and pencil, which 
frequently led to reactive maintenance procedures. This 
approach leads to unplanned outages, which could have been 
prevented or minimized with more proactive strategies [6]. In 
general, there are three types of maintenance techniques: 

• Reactive Maintenance (RM): RM stands for "run-
to-failure" maintenance management. Equipment 
repair and maintenance are only carried out when the 
equipment has malfunctioned or is at risk of failure.  

• Preventive Maintenance (PM): To reduce the 
chance of failures, PM, also known as scheduled 
maintenance, plans routine maintenance tasks for 
certain pieces of equipment. Even when the 
equipment is operating normally, maintenance is 
carried out to prevent unplanned malfunctions and the 
associated expenses and downtime. 

• Predictive Maintenance (PdM): Condition-based 
maintenance, or PdM, aims to create an appropriate 
trade-off between maintenance frequency and cost by 
predicting when equipment is likely to break and 
identifying which maintenance operations should be 
performed. 

B. Predictive Maintenance Purposes 

The PdM's main objectives are to save operating expenses, 
avoid unscheduled downtime, and enhance system 
dependability and availability [7]. In the following 
paragraphs, the objectives of predictive maintenance covered 
in more detail (Figure 1): 

 

Fig. 1. Purposes of Predictive Maintenance 

Here are the PdM purposes are as follows 

• Equipment’s Availability and Reliability: The 
availability indicates how long a machine is usable 
and ready for production. Through ongoing data 
monitoring and several prognostic techniques, a PdM 
system makes problem diagnosis possible in the 
future, lowering the frequency of fatal failures and 
equipment downtime [8]. Minimizing downtime 

dramatically cuts expenses and enhances 
productivity. Therefore, since the two objectives are 
connected, improving the equipment's availability 
and dependability is essential. 

• Prolong A Machine’s Life: A PdM system seeks to 
increase a machine's lifespan by enabling ongoing 
health status monitoring and estimating the machine's 
remaining usable life. As so, it reduces the possibility 
of a deadly malfunction. Additionally, a PdM system 
avoids needless maintenance that might endanger the 
equipment.  

• Cost Minimization: The aforementioned goals are 
connected to the objective of cost minimization. PdM 
system implementation is costly, but it makes sense 
from a long-term commercial standpoint. A 
trustworthy PdM system, for instance, would only 
permit the storage of the spare parts that are absolutely 
required, as opposed to holding spare parts that may 
be required in the future. For this reason, a PdM 
system maintains a good maintenance procedure 
while lowering the quantity of spare parts in store and 
the total storage size. 

• Employee Safety: A PdM system ensures the safety 
of workers operating close to or immediately in front 
of the machinery by keeping an eye on its operational 
state and preventing catastrophic malfunctions. 

C. Data Sources for Predictive Maintenance  

The foundation of predictive maintenance (PdM) is the 
analysis of both historical and current data to forecast asset 
performance and potential failures. The primary data types 
include: 

• Event data is derived from fault detection through 
fault isolation, to find the breakdown points, and fault 
identification, to determine characteristics of the 
failures and their extent.  

• Condition data is commonly recorded from sensors 
that have identified real-time alerts if critical 
thresholds are broken, depending on what parameter 
is being monitored, i.e., temperature and voltage, all 
from the view of preserving asset performance, 
prediction, and remediation. The cost of sensors and 
the difficulties of retrofitting them are compounded 
by regulatory challenges.  

• As alternatives to sensors, it is not uncommon to see 
streaming data sources such as convenience through 
satellites, weather stations, and Industrial Control 
Systems (ICS) PLC and SCADA communication 
platforms to monitor industrial processes [9]. 
Furthermore, everything is logged, from warnings to 
errors and service logs, but their ad-hoc nature 
presents challenges. 

• Finally, the systems mentioned above, such as ERP, 
CRM, HR, and financial platforms, were not designed 
for maintenance monitoring. Similarly, spreadsheets 
were never intended for predictive or preventive 
maintenance, and while they can be adapted, they are 
generally inadequate for modern PdM requirements. 

D. Key Components in AI-Based Predictive Maintenance 

As illustrated in Figure 2, the six main elements of AI-
based PdM include user interface and reporting, 
communication and integration, algorithms, data preparation, 
and decision-making modules.  
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Fig. 2. Key Components of an AI-Based PdM System 

This section goes over each element to show how they 
cooperate to make AI-based PdM possible:  

• Sensors: Sensors are the main data collectors in a 
PdM system [10]. To continuously check several 
parameters, including vibration, pressure, and 
temperature, these specialized devices are installed on 
machinery and equipment at key locations.    
Predictive maintenance analysis is based on real-time 
sensor data on the equipment's condition. 

• Data Pre-processing: The raw sensor information is 
usually noisy and is not uniform. Preparing the data 
for analysis begins with data preparation.  It covers 
data normalization, data cleaning, and the remediation 
of missing data. Good quality of data is crucial to 
proper PdM modelling. 

• AI Algorithms: The brain of the PdM systems is AI 
algorithms, including DL and ML techniques. After 
processing the data, the algorithms identify the most 
crucial elements pertaining to potential failures.  They 
can also predict anomalies, RUL, and equipment 
failures by analysing historical data. 

• Decision-Making Modules: The AI algorithms' 
predictions and insights are processed by the 
decision-making modules. These modules are 
responsible for determining when maintenance is 
necessary. When necessary, they can initiate 
notifications to fixers and provide guidance on 
preventive or corrective fix work and scheduling. 

• Communication and Integration: Integration and 
communication aid in making sure that, using the 
system's results, suitable action is taken.  Effective 
communication with various stakeholders, including 
management and maintenance personnel, is essential 
for this element. Additionally, Predictive 
maintenance integrates enterprise-wide solutions to 
align with broader business objectives, such as ERP 
and asset management software. 

• User Interface and Reporting: In order for 
maintenance personnel and decision-makers to access 
these insights, they should be made available through 
user interfaces and reporting tools.  The technologies 
help users make educated decisions by facilitating the 
comprehension of complicated data patterns through 
dashboards, data visualization, and reporting.  
Dashboards and data visualization are effective tools 
for communicating predicted data and data insights to 
decision-makers and maintenance staff. When 
analyzing complex data trends and making informed 
decisions, visual representation schemes are helpful. 

III. MACHINE LEARNING APPROACHES FOR PREDICTIVE 

MAINTENANCE 

The basics of machine learning (ML) in predictive 
maintenance (PdM) emphasize its use as a means of 
processing equipment data to forecast failures, minimize 
expenditures, and increase reliability. As a subdivision of AI, 
ML is pattern recognizing and predictive by learning 
supervised, unsupervised, and reinforcement learning. 
Classification and defect detection problems can be 
successfully solved by traditional ML techniques as decision 
trees, logistic regression, support vector machines, and 
random forests. DL expands these abilities, where Artificial 
Neural Networks, CNNs, and RNNs sustain excellent 
performance for managing complicated, high-dimensional, 
and time-varying PdM data. 

A. Overview of Machine Learning in PdM 

According to research, machine learning (ML) is a 
revolutionary technology in various industries, particularly in 
the application of predictive maintenance in the oil and gas 
sector. Predictive maintenance maximizes maintenance 
schedules and lowers operating costs by using ML to assess 
equipment data and anticipate issues before they occur.  To 
comprehend how ML is applied in predictive maintenance, 
one must be familiar with its fundamental ideas and 
techniques. In essence, ML is a branch of AI that allows 
systems to learn and get better over time as they get more and 
more data without explicit programming [11]. The main goal 
of ML is to develop algorithms that can recognize patterns, 
decide, and forecast results from incoming data. This factor is 
especially important in sectors where equipment durability 
and efficiency are crucial, in the gas and oil industry. The three 
main categories that include a variety of ML methodologies 
are supervised learning, unsupervised learning, and 
reinforcement learning. 

 

Fig. 3. Flow of Traditional ML and DL Based Methods 

The classical ML and DL pipelines, as depicted in Figure 
3 [12]. In traditional ML, the explicit processing of the data 
involves feature extraction and selection prior to the execution 
of algorithms to produce outputs, whereas in processing raw 
input data via layered models in DL, relevant features are 
automatically learned in producing relevant target outputs 
without human intervention. 

B.  Machine Learning (ML) Techniques for PdM 

The core technology of artificial intelligence (AI) is 
machine learning (ML), and the advancement of intelligent 
systems depends on its algorithms [13]. The existence of 
large-scale data has allowed the broad adoption of ML in a 
variety of areas, and predictive maintenance (PdM) of 
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industrial equipment has been one of them. One of the most 
promising fields in which data-driven approaches may be 
applied is PdM, and the use of ML leads to the possibility of 
predicting failures and optimizing maintenance schedules 
[14]. Classical algorithms, such as LR, SVM, DT, and RF, 
have been widely used in PdM because they have been shown 
to be highly effective algorithms for classification and 
regression tasks. They are commonly used in favor of their 
simplicity, interpretability, and efficiency, although other 
more complicated and high-performance algorithms are being 
increasingly developed. Thus, while advanced deep learning 
and hybrid models are gaining traction, simple yet robust ML 
techniques remain a practical choice in many PdM scenarios, 
especially where computational efficiency and explain ability 
are critical. 

• LR Model: In machine learning, one of the most used 
classification models with the simplest technique is 
logistic regression (LR). Since it is supervised 
learning, the gathered data must be labelled in order 
to be included in the model.  Moreover, the LR model 
employs a nonlinear function to convert a linear 
combination of input properties, ensuring that each 
output falls between 0 and 1, thereby enabling a 
probabilistic interpretation. 

• SVM Model: Binary classification challenges are 
often addressed by the Support Vector Machine 
(SVM) model.  SVMs have been frequently used in 
PdM of industrial equipment to determine a specific 
state based on the signals collected.  Furthermore, the 
SVM model can be applied to multiclass problems, as 
the provided feature types are varied, and low-
dimensional features can be mapped onto 
hyperplanes. 

• DT and RF Model: In several fields, including 
character identification, medical diagnosis, and 
speech recognition, the application of decision tree 
(DT) classifiers has proven highly effective.  Most 
importantly, a DT model can repeatedly break down 
covariate space into subspaces to provide a probable 
and understandable solution. Consequently, a 
complicated decision-making process might be seen 
as a series of challenging decisions. Moreover, the 
Random Forest (RF) approach is a DT classifier in an 
ensemble learning collection, and each tree 
determines the program's overall classification. 

C. Deep Learning (DL)Techniques for PdM 

In this section, the author provides an introduction to DL 
and highlights the most popular architectures in the context of 
predictive maintenance (PdM). After the past years, DL 
models have demonstrated better performance than the 
conventional methods of statistical and machine learning 
when plentiful historical data are accessible [15]. DL is a type 
of ANN inspired by how the human brain functions, extending 
beyond shallow networks with only one or two hidden layers 
to deeper architectures capable of capturing complex patterns 
in data.  

• ANNs are composed of neurons that create outputs 
using non-linear activation functions like rectified 
linear units (ReLU) and sigmoid, or tanh, and perform 
linear regressions on inputs using weights. To 
translate input data into output data, the network's 
parameters are typically initialised randomly and then 
modified based on the training dataset. Combining the 

gradient descent approach with the backpropagation 
algorithm facilitates this learning process. These 
allow for the calculation of each neuron's 
modifications in relation to the network's error output, 
which is determined using the user-defined cost 
function. 

• Convolutional neural network (CNN) uses 
convolutional filters to preserve the neighbourhood of 
neurons in this kind of feedforward network [16]. 
Drawing inspiration from the visual brain of animals, 
it finds use in a variety of fields, including signal and 
image identification, recommendation systems, and 
NLP. To provide non-linear output, an activation 
function is applied after the convolutional layer, 
which is typically linear. 

• Recurrent neural network (RNN) models Temporal 
information by keeping track of the state derived from 
the network's previous inputs. An adaption of 
conventional backpropagation for temporal data, the 
back-propagation over time technique spreads the 
network's mistake to earlier time occurrences.  

D. Industrial Applications 

Here are the industrial applications are as follows:  

1) Manufacturing and Assembly Lines 
In modern manufacturing environments, predictive 

maintenance is applied to monitor machines such as motors, 
bearings, conveyors, and robotic arms. By analyzing 
vibration, acoustic, and thermal data, ML models can detect 
early signs of wear, reduce unexpected breakdowns and 
ensure smooth production. PdM in assembly lines helps 
minimize downtime, improve product quality, and optimize 
scheduling of repairs. 

2) Oil & Gas Pipelines and Drilling Rigs 
The oil and gas industry is particularly vulnerable to 

equipment failures, which can lead to costly downtime, 
environmental damage, or safety hazards. Predictive models 
are used to detect leaks, corrosion, or abnormal pressure in 
pipelines, as well as mechanical failures in drilling rigs. In this 
vital sector, data-driven PdM reduces maintenance costs, 
improves safety, and permits proactive interventions. 

3) Power Plants and Energy Systems 
In energy generation, whether it is traditional power 

plants, wind turbines, or solar arrays, PdM is crucial in 
maintaining a stable power supply. Predictive models can 
identify cracks in turbine blades, generator faults, and 
transformer degradation before disastrous failures occur. 
These applications can be used to improve the reliability of 
assets, provide longer equipment life lows as well as help in 
producing sustainable energy. 

4) Aerospace and Transportation 
The transportation and aerospace industries require great 

safety and dependability. PdM is used extensively on aircraft 
engines, avionics systems and railway parts like rail wheels 
and rail brakes. The frequent surveillance and ML-assisted 
fault prediction optimize flight delays and enhance the safety 
of passengers and optimization of maintenance schedules, 
where it is imperative to abide by stringent safety rules. 

5) Smart Factories (Industry 4.0 Context) 
Safety and reliability are required in the aerospace and 

transportation industries. PdM is extensively limited to the 
engine of aircraft, avionics, and railway equipment, like 
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wheels and brakes. Constant monitoring and predicting of 
faults using ML decreases the time loss in flights, increases 
patient safety and optimizes by maintaining schedules and 
facilities, which is in line with the high standards of safety. 

IV. EVALUATION METRICS AND CHALLENGES IN PREDICTIVE 

MAINTENANCE 

The metrics and challenges of predictive maintenance 
(PdM) evaluation are crucial for presenting objective evidence 
of the model's practicality and relevance in the actual world.   
Among the evaluation measures used in classification are F1-
score, recall, accuracy, and precision. In the case of 
maintenance systems, consider measures such as MTBF, 
MTTR, MTTF, OEE, and failure rate. The metrics used to 
measure the dependability of the system performance [17]. 
Although PdM use can have many benefits, obstacles to its 
implementation exist. Principles and organizational expenses 
are significant, and skilled human operators are usually 
required to carry out repairs due to human error. There can be 
great restrictions on data in the initial stages of adoption or 
implementation. Such obstacles should be overcome to make 
the most of the Industry 4.0 maintenance strategies. 

A. Common Evaluation Metrics 

The most frequent measurement combinations that are 
frequently used to identify the performance of predictive 
maintenance models are as follows:  

Accuracy: One of the most popular assessment metrics 
used to determine the performance of classification algorithms 
is accuracy. The expression for classification accuracy is 
found in Equation (1): 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 () 

Precision: A classifier is an absolute measure of how 
correct classification is once a prediction stage has been made. 
True positives (TP) divided by the total of TP and FP is the 
assessment metric, as shown in Equation (2) below: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 () 

Sensitivity: Recall, or sensitivity, is a parameter of how a 
classifier goes about identifying positive instances. As seen in 
Equation (3) below, it determines the proportion of 
successfully recognized positive cases by dividing TP by the 
sum of TP and FN: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 () 

F1-Score: The F1-score, a statistic used in classification 
approaches to describe a model's overall performance, is the 
harmonic mean of accuracy and recall [18]. The measure is a 
number between 0 and 1, with a high number denoting 
excellent classification performance and a low number 
denoting subpar classification performance. Equation (4) 
provides the F-score: 

 𝐹1 −  𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 () 

These assessment indicators present a balance between the 
accuracy, topicality and thoroughness of predictions in the 
evaluation models of predictive maintenance. The 
combination of them makes sure the classification 
performance is well measured under various scenarios of 
faults. 

B. Mean Time Between Failures (MTBF) and Maintenance-

Specific Metrics 

Mean Time between Failures (MTBF) and other metrics 
related to maintenance are necessary to measure the strength 
of a system as well as the efficiency demonstrated by its 
maintenance. These measures are used to estimate life of the 
equipment and the optimization of maintenance. 

1) Mean Time Between Failures (MTBF) 
MTBF is often regarded as one of the most significant 

reliability parameters in predictive maintenance. It is an 
equivalent of the average working life of a system or part 
between two failures and is expressed as in Equation (5): 

 MTBF =
Total Operational Time

Number of Failures
 () 

The increasing MTBF value denotes longer periods of 
equipment operation without unexpected shutdowns. In 
predictive maintenance, the main target is to prolong MTBF. 
The longer this value is, the better monitoring systems 
perform, and the more effectively the machine learning model 
predicts failures before they occur [19]. TBF is especially 
suited for comparing systems' maintenance strategies and 
tracing the reliability of a system as it ages. 

2) Maintenance-Specific Metrics 
In addition to the MTBF, there are several other 

maintenance metrics that are commonly employed by 
maintenance professionals to define system performance and 
reliability: 

• Mean Time to Repair (MTTR): Average time 
required to restart machinery following a 
malfunction. 

• Mean Time To failure (MTTF): Average time 
equipment operates until the first failure, non-
repairable systems. 

• Overall Equipment Effectiveness (OEE): A 
combined measure that takes into account product 
quality, performance efficacy, and availability. 

• Failure Rate (λ): The number of failures recorded per 
time period. Commonly used in reliability 
engineering. 

• Availability Ratio: The amount of time in which a 
piece of equipment is operational compared to the 
entire observation period. 

C. Key Challenges of Predictive Maintenance 

It seems certain that Industries have embraced predictive 
maintenance, but obstacles stand in the way of its general 
application as a prudent maintenance method [20]. Even 
though predictive maintenance algorithms are now available, 
businesses hoping to take advantage of Industry 4.0 still have 
to weigh the upfront expenses of purchasing the necessary 
tools, software, and expertise against the possibilities of 
predictive maintenance [21]. When predictive maintenance is 
just getting started and there is little to no real information on 
typical and unusual equipment performance, this drawback is 
most noticeable. This is particularly true when designing new 
systems, as there is no prior knowledge of how they operate. 

1) Financial and Organizational Limits 
The expenses of each new investment must be carefully 

considered by for-profit businesses.  Installing sensors, 
gathering data, creating and maintaining models, and 
performing maintenance tasks are all costs associated with 
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implementing predictive maintenance (PdM).  The kind and 
complexity of the equipment, the sophistication of the sensors, 
consultation and installation fees, and whether the necessary 
knowledge is available internally or needs to be acquired 
externally are just a few of the variables that can significantly 
affect these expenses. 

2) Machine Repair Activity Constraints 
Estimating a component's remaining useful life (RUL) 

enables more effective maintenance scheduling; however, the 
actual repair process remains constrained by human 
involvement and the absence of autonomous self-
maintenance.  Since the majority of machine components still 
require manual supervision and intervention, the skill level 
and managerial calibre of human operators have a significant 
impact on how well maintenance works. Industrial machines, 
in particular, function reactively by executing predefined 
commands and do not have the capacity to independently 
question or adapt maintenance plans. 

3) Data Source Limits 
To create a production process management model, 

pertinent data must be available. But when businesses first 
introduce production process management, they almost never 
have all the necessary information. The holes must be 
identified and filled using the available data. 

V. LITERATURE REVIEW 

In this section, a literature review of predictive 
maintenance in industrial systems has been provided with 
emphasis on ML and DL methods, integration of IIoT, 
quantum-enhanced systems, anomaly detection, Remaining 
Useful Life (RUL) prediction, and digital twin design as the 
means of enhancing accuracy, scalability, and sustainable 
industrial operations. 

Pandey et al. (2025) discuss a predictive methodology that 
utilizes real-time data from motor-mounted temperature, 
vibration, and current sensors. Advanced algorithms analyze 
the data to identify unusual patterns and predict when 
equipment may fail, allowing for preventive repairs before any 
issues arise. The ML algorithms in predictive maintenance 
systems are typically used to predict equipment failures. At 
least in terms of comparing the algorithms, the highest quality 
of the prediction of motor failures can be seen in the method 
known as Random Forest (RF).  By facilitating more effective 
scheduling and informed decision-making, Predictive 
maintenance using data can drastically reduce maintenance 
costs and downtime. Industrial motor maintenance may be 
enhanced by integrating MQTT messaging, ML, and 
technology for the IIoT.  This is consistent with Industry 4.0's 
goals for environmentally friendly [22]. 

Chouhan et al. (2025) discuss the integration of quantum 
algorithms on Google Quantum AI for optimising IIoT-based 
predictive maintenance systems. Faster data processing is 
made possible by methods such as quantum k-means 
clustering and quantum support vector machines (QSVM), 
which further enhance the accuracy of the anomaly detection 
process. Techniques such as the Quantum Approximate 
Optimization Algorithm (QAOA) help optimize schedules for 
maintenance and resource allocation, thereby reducing 
downtime and operational costs. Therefore, quantum 
simulations do better forecasts with the proper handling of 
equipment wear and material degradation, which enables 
proactive maintenance actions. Sustainably implemented 

quantum-fortified techniques are expected to yield the fewest 
false positives, minimize unplanned downtime events, and 
optimize maintenance resource usage [23].  

Juliet's (2025) strategy plans maintenance to reduce 
downtime and maximise operational effectiveness.  The fact 
that inaccurate forecasts and false alarms might result from 
low-quality data, it challenging to obtain reliable, consistent, 
and well-integrated IoT sensor data. Scaling real-time fault 
detection and prediction requires substantial computational 
power and optimized algorithms to process the continuous 
influx of data from multiple machines. To address data quality 
and integration issues while enhancing real-time processing 
and scalability, a Custom Neural Network technique can be 
used to improve IoT sensor data accuracy and consistency, 
and efficiently manage the computational demands of 
continuous data influx for fault detection and prediction. The 
proposed system, leveraging an extended Neural Network 
technique, enhances prediction accuracy by efficiently 
managing diverse industrial datasets and improves real-time 
fault detection through optimized data processing and reduced 
latency [24].  

Razzaq, Jazzel Mehmood and Khan (2024) intend to 
compare basic regression and ARIMA models to investigate 
RNNs' potential for predictive maintenance in a use case 
involving industrial machinery. It also highlights the 
significant improvement RNNs make over the 
aforementioned strategies. This research also proposes an 
extension of the existing virtual reality-based digital twin 
architecture to incorporate automated predictive maintenance 
of the machine. Moreover, the proposed digital twin 
architecture serves as a foundation for the automated 
predictive maintenance of any product. Smart manufacturing 
in Industry 4.0 has come about due to digital twin technology 
[25]. 

Narayanan et al. (2024) analyze predictive maintenance 
using ML across a number of industries.  It describes the 
methodology for gathering and pre-processing information 
from various sensors and equipment logs, as well as the 
important process of feature engineering to isolate meaningful 
aspects of the information. All relevant approaches to ML 
algorithms and the methods for training the model are 
discussed in detail. Additionally, the study highlights the 
crucial role of anomaly detection strategies in the early 
identification of failures, enabling timely preventive 
intervention in the event of machinery failures. The main 
focus of this effort is on developing predictive maintenance 
models that calculate the equipment's remaining useful life 
(RUL). RUL projections are discussed when determining the 
thresholds of the maintenance operations, and they are aimed 
at balancing performance and costs [26]. 

Jadhav et al. (2023) investigate industrial machinery 
predictive maintenance. Using a Google form, collected 
several opinions from specialists in the fields of ML, IoT, and 
Information Technology. Learned from this survey that if 
don't take any proactive steps to maintain industrial 
equipment, a lot of rubbish is produced, which further 
contributes to pollution and several other issues, including a 
lack of equipment and many others. IoT is extensively utilised, 
and gadgets are common in many different businesses. 
Industrial IoT uses sensors and IoT devices to keep an eye on 
surrounds and equipment, ensuring the optimal functioning of 
equipment and processes. Predictive maintenance, which 
monitors equipment health to forecast component breakdown, 
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is one industrial IoT solution that has lately attracted attention. 
Effective Predictive Maintenance is made possible by using 
ML algorithms to gather, analyse, and interpret vast volumes 
of data [27]. 

Table I presents a summary of the literature review, 
highlighting the focus, approach, key findings, challenges, 
and proposed future directions of each study. 

TABLE I.  COMPARATIVE ANALYSIS OF LITERATURE REVIEW ON MACHINE LEARNING FOR PREDICTIVE MAINTENANCE IN INDUSTRIAL SYSTEMS 

Reference Study On Approach Key Findings Challenges Future Direction 

Pandey et al. 
(2025) 

Predictive maintenance 
using vibration, current, 

and temperature sensors 

on motors 

Machine Learning with 
Random Forest 

algorithm for anomaly 

detection 

RF shows highest 
accuracy in predicting 

motor failures 

Ensuring real-time 
accuracy and handling 

diverse data streams 

Enhance integration 
with IIoT and 

optimize decision-

making 

 Chouhan et al. 
(2025) 

Quantum algorithms for 
IIoT-based predictive 

maintenance 

Quantum SVM, 
Quantum K-means, 

and QAOA for 

optimization 

Quantum methods 
improve speed, 

scalability, and reduce 

false positives 

Quantum algorithms 
require advanced 

infrastructure and 

integration 

Expand use of 
quantum ML in 

industrial predictive 

maintenance 

Juliet (2025) Custom Neural Network 

for IoT sensor data 

quality and real-time 

fault detection 

Extended Neural 

Network for improved 

data accuracy and 

processing 

Improved IoT data 

consistency and 

reduced latency in real-

time fault detection 

Scalability and 

computational load for 

continuous IoT data 

streams 

Enhance IoT fault 

detection scalability 

with optimized NN 

 Razzaq, Jazzel 

Mehmood and 

Khan (2024) 

RNNs for predictive 

maintenance and 

integration with digital 
twin 

Comparative analysis 

of RNNs, Regression, 

and ARIMA with VR-
based digital twin 

RNNs outperform 

regression and 

ARIMA, VR digital 
twin enhances 

predictive maintenance 

Complexity in 

integrating VR digital 

twin with predictive 
maintenance 

Further enhance VR 

digital twins for 

general industrial 
use 

Narayanan et al. 
(2024) 

ML-based predictive 
maintenance with focus 

on RUL estimation 

Data preprocessing, 
feature engineering, 

anomaly detection, 

RUL projection 

RUL-based predictions 
balance cost-

effectiveness and 

reliability 

Defining reliable 
thresholds for RUL-

based decisions 

Refine RUL models 
and improve 

anomaly detection 

accuracy 

Jadhav et al. 

(2023) 

Survey of expert 

opinions on IoT and 

predictive maintenance 

Google form survey on 

IoT, ML, and IT 

experts 

Predictive 

maintenance reduces 

waste and pollution, 
IoT widely adopted 

Need for proactive 

adoption and 

addressing 
environmental 

concerns 

Promote sustainable 

practices and expand 

IoT-based predictive 
maintenance 

VI. CONCLUSION AND FUTURE WORK 

Reactive and preventative maintenance methods have 
given way to predictive maintenance (PdM) as a result of 
Industry 4.0.  Utilizing real-time sensor data, including 
vibration, temperature, and current, PdM lowers operating 
costs, increases equipment availability, and minimizes 
downtime.  In defect detection, anomaly identification, and 
ML and DL models like RF, SVM, CNN, and RNN have 
demonstrated exceptional performance in estimating 
Remaining Useful Life (RUL). Beyond traditional methods, 
integration with Industrial IoT platforms, digital twins, and 
emerging quantum-based algorithms provides enhanced 
scalability, faster computation, and improved sustainability in 
industrial systems. These developments enhance safety, 
dependability, and resource efficiency, while also facilitating 
optimal decision-making.  However, issues such as uneven 
data quality, high processing demands, and implementation 
expenses —whether monetary or organizational —continue to 
be major obstacles. Future research should concentrate on 
creating energy-efficient prediction models, scalable, and 
interpretable. Advancements in quantum ML, digital twin 
integration, and sustainable IoT frameworks can enhance 
reliability. However, addressing data gaps, standardization, 
and cybersecurity remains critical for robust real-time 
industrial adoption. Moreover, greater emphasis on transfer 
learning and federated learning can enable knowledge sharing 
across industries. Collaborative human–AI systems will 
further ensure trust, adaptability, and widespread use of 
solutions for predictive maintenance. 
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