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Abstract—The rapid development of Industry 4.0 has transformed industrial systems because it has allowed the use of data-driven
solutions to monitor equipment and prevent faults. Predictive maintenance (Pd.M.), which utilizes advanced analytics and uses
artificial intelligence to predict when a breakdown is likely to happen, is becoming more and more prevalent in the industry, in
addition to more traditional methods like reactive and preventative maintenance. Pd.M. can utilize event logs, control systems, and
real-time sensor data streams to enhance equipment availability, minimize downtime, and allocate resources as efficiently as possible.
Strong anomaly detectors, defect classifiers, and Remaining Useful Life (RUL) predictions may be obtained using machine learning
(ML) and deep learning (DL) models, which are regarded as crucial tools in Pd.M. Across a range of industrial situations, Random
Forest (RF) methods, Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Recurrent Neural Networks
(RNN) may be applied with great predictive flexibility. Additionally, scalability, efficiency, and sustainability are improved in
contemporary operations through integration with digital twins, the Industrial Internet of Things (110T), and quantum-enhanced
techniques. These developments notwithstanding, there are still challenges, including low data quality, heavy computing
requirements, and barriers to adoption by organizations. However, with the further implementation of smart PdM systems,
operational efficiency can be enhanced, safety can increase, and sustainable industrial growth can be achieved, marking a crucial

step toward smarter and healthier industrial ecosystems.
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I. INTRODUCTION

The emergence of Industry 4.0 or the Fourth Industrial
Revolution has revolutionized the behaviour of industry by
being connected, with huge data sets, smart devices, tailoring,
and automatically controlled production processes [1]. Under
this new paradigm, maintenance strategies now extend beyond
traditional Run-to-Failure (R2F) and Preventive Maintenance
(PvM) models to more current Predictive Maintenance (PdM)
models. The least complex is R2F, or corrective maintenance,
which is done exclusively after the equipment malfunctions,
resulting in an expensive cost of downtime. PvM, on the other
hand, implements interventions with pre-determined intervals
to stop the breakdown, but often causes unnecessary repairs
and heightened costs [2]. PAM mitigates these constraints
through ongoing monitoring of equipment status and the use
of statistical inference, domain knowledge, and ML methods
to detect patterns of degradation, thereby identifying the
optimal time for a maintenance operation. Through upstream
planning of failures, PdM saves time through advance
planning, facilitates cost-reduction in operations and
encourages the sustainability of production activities [3].

The opportunities provided by increasing access to real-
time data about industrial processes have facilitated
implementing machine learning (ML) and deep learning (DL)
into PdM. RF, LR, SVM, and DT are examples of traditional
ML techniques. These all utilize manually generated time,
frequency, and time-frequency domain characteristics to
operate. In contrast, DL models—such as LSTM networks,
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RNN, and CNN-—can automatically identify hierarchical
representations in unprocessed sensor data and facilitate end-
to-end prediction [4]. Although DL eliminates the need for
sophisticated feature engineering, its models can be
considered black boxes due to poor interpretability. However,
both ML and DL methods have already demonstrated high
predictive maintenance potential and have been increasingly
adopted into production systems, making them, as such, at the
core of the new era of intelligent manufacturing.

The aim of the article is to give a step-by-step overview of
ML techniques employed in Predictive industrial system
maintenance. The objective is to describe the available
methods, address their advantages and disadvantages, and
propose research opportunities in future studies to enhance
reliability and efficiency in industry.

A. Structure of the Paper

The structure of this paper is as follows: Section Il
introduces predictive maintenance strategies in Industry 4.0.
Section 111 explains data sources and pre-processing. Section
IV discusses ML and DL techniques. Section V presents a
detailed literature review. Section VI provides conclusions
and future research directions.

Il. FUNDAMENTALS OF PREDICTIVE MAINTENANCE

Predictive Maintenance (PdM) has transitioned from
conventional methods, which primarily rely on Condition-
based maintenance methods include Preventive Maintenance
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(PM) and Reactive Maintenance (RM) [5]. PAM seeks to save
operating costs, increase equipment availability, prolong its
useful life, and improve employee safety by predicting failures
and continuously monitoring mechanical assets. PdM utilizes
a wide variety of data streams, despite the obstacles of cost
and integration. To deliver dependable prediction capabilities
and connect maintenance tasks with organizational objectives
in Industry 4.0, Al-based PdM utilizes sensors, data
preparation, algorithms, communication, decision-making,
and human-computer interfaces.

A. Types of Maintenance

Maintenance strategies efficiency. Traditionally, many
systems, such as power grids or data centres, relied on manual
tracking utilizing spreadsheets or paper and pencil, which
frequently led to reactive maintenance procedures. This
approach leads to unplanned outages, which could have been
prevented or minimized with more proactive strategies [6]. In
general, there are three types of maintenance techniques:

¢ Reactive Maintenance (RM): RM stands for "run-
to-failure” maintenance management. Equipment
repair and maintenance are only carried out when the
equipment has malfunctioned or is at risk of failure.

e Preventive Maintenance (PM): To reduce the
chance of failures, PM, also known as scheduled
maintenance, plans routine maintenance tasks for
certain pieces of equipment. Even when the
equipment is operating normally, maintenance is
carried out to prevent unplanned malfunctions and the
associated expenses and downtime.

e Predictive Maintenance (PdM): Condition-based
maintenance, or PdM, aims to create an appropriate
trade-off between maintenance frequency and cost by
predicting when equipment is likely to break and
identifying which maintenance operations should be
performed.

B. Predictive Maintenance Purposes

The PdM's main objectives are to save operating expenses,
avoid unscheduled downtime, and enhance system
dependability and availability [7]. In the following
paragraphs, the objectives of predictive maintenance covered
in more detail (Figure 1):

Prolonga ||
maching's life
- Availability Pdm
and reliability purposes
Safety

Fig. 1. Purposes of Predictive Maintenance

Cost &
minimization .

Here are the PdM purposes are as follows

o Equipment’s Availability and Reliability: The
availability indicates how long a machine is usable
and ready for production. Through ongoing data
monitoring and several prognostic techniques, a PdM
system makes problem diagnosis possible in the
future, lowering the frequency of fatal failures and
equipment downtime [8]. Minimizing downtime
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dramatically  cuts expenses and  enhances
productivity. Therefore, since the two objectives are
connected, improving the equipment's availability
and dependability is essential.

e Prolong A Machine’s Life: A PdM system seeks to
increase a machine's lifespan by enabling ongoing
health status monitoring and estimating the machine's
remaining usable life. As so, it reduces the possibility
of a deadly malfunction. Additionally, a PdM system
avoids needless maintenance that might endanger the
equipment.

e Cost Minimization: The aforementioned goals are
connected to the objective of cost minimization. PAM
system implementation is costly, but it makes sense
from a long-term commercial standpoint. A
trustworthy PdM system, for instance, would only
permit the storage of the spare parts that are absolutely
required, as opposed to holding spare parts that may
be required in the future. For this reason, a PdM
system maintains a good maintenance procedure
while lowering the quantity of spare parts in store and
the total storage size.

e Employee Safety: A PdM system ensures the safety
of workers operating close to or immediately in front
of the machinery by keeping an eye on its operational
state and preventing catastrophic malfunctions.

C. Data Sources for Predictive Maintenance

The foundation of predictive maintenance (PdM) is the
analysis of both historical and current data to forecast asset
performance and potential failures. The primary data types
include:

e Event data is derived from fault detection through
fault isolation, to find the breakdown points, and fault
identification, to determine characteristics of the
failures and their extent.

e Condition data is commonly recorded from sensors
that have identified real-time alerts if critical
thresholds are broken, depending on what parameter
is being monitored, i.e., temperature and voltage, all
from the view of preserving asset performance,
prediction, and remediation. The cost of sensors and
the difficulties of retrofitting them are compounded
by regulatory challenges.

e As alternatives to sensors, it is not uncommon to see
streaming data sources such as convenience through
satellites, weather stations, and Industrial Control
Systems (ICS) PLC and SCADA communication
platforms to monitor industrial processes [9].
Furthermore, everything is logged, from warnings to
errors and service logs, but their ad-hoc nature
presents challenges.

e Finally, the systems mentioned above, such as ERP,
CRM, HR, and financial platforms, were not designed
for maintenance monitoring. Similarly, spreadsheets
were never intended for predictive or preventive
maintenance, and while they can be adapted, they are
generally inadequate for modern PdM requirements.

D. Key Components in Al-Based Predictive Maintenance

As illustrated in Figure 2, the six main elements of Al-
based PdM include wuser interface and reporting,
communication and integration, algorithms, data preparation,
and decision-making modules.
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Fig. 2. Key Components of an Al-Based PdM System

This section goes over each element to show how they
cooperate to make Al-based PdM possible:

e Sensors: Sensors are the main data collectors in a
PdM system [10]. To continuously check several
parameters, including vibration, pressure, and
temperature, these specialized devices are installed on
machinery and equipment at key locations.
Predictive maintenance analysis is based on real-time
sensor data on the equipment's condition.

o Data Pre-processing: The raw sensor information is
usually noisy and is not uniform. Preparing the data
for analysis begins with data preparation. It covers
data normalization, data cleaning, and the remediation
of missing data. Good quality of data is crucial to
proper PdM modelling.

e Al Algorithms: The brain of the PdM systems is Al
algorithms, including DL and ML techniques. After
processing the data, the algorithms identify the most
crucial elements pertaining to potential failures. They
can also predict anomalies, RUL, and equipment
failures by analysing historical data.

o Decision-Making Modules: The Al algorithms'
predictions and insights are processed by the
decision-making modules. These modules are
responsible for determining when maintenance is
necessary. When necessary, they can initiate
notifications to fixers and provide guidance on
preventive or corrective fix work and scheduling.

e Communication and Integration: Integration and
communication aid in making sure that, using the
system's results, suitable action is taken. Effective
communication with various stakeholders, including
management and maintenance personnel, is essential
for this element. Additionally, Predictive
maintenance integrates enterprise-wide solutions to
align with broader business objectives, such as ERP
and asset management software.

e User Interface and Reporting: In order for
maintenance personnel and decision-makers to access
these insights, they should be made available through
user interfaces and reporting tools. The technologies
help users make educated decisions by facilitating the
comprehension of complicated data patterns through
dashboards, data visualization, and reporting.
Dashboards and data visualization are effective tools
for communicating predicted data and data insights to
decision-makers and maintenance staff. When
analyzing complex data trends and making informed
decisions, visual representation schemes are helpful.
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I1l. MACHINE LEARNING APPROACHES FOR PREDICTIVE
MAINTENANCE

The basics of machine learning (ML) in predictive
maintenance (PdM) emphasize its use as a means of
processing equipment data to forecast failures, minimize
expenditures, and increase reliability. As a subdivision of Al,
ML is pattern recognizing and predictive by learning
supervised, unsupervised, and reinforcement learning.
Classification and defect detection problems can be
successfully solved by traditional ML techniques as decision
trees, logistic regression, support vector machines, and
random forests. DL expands these abilities, where Artificial
Neural Networks, CNNs, and RNNs sustain excellent
performance for managing complicated, high-dimensional,
and time-varying PdM data.

A. Overview of Machine Learning in PdM

According to research, machine learning (ML) is a
revolutionary technology in various industries, particularly in
the application of predictive maintenance in the oil and gas
sector. Predictive maintenance maximizes maintenance
schedules and lowers operating costs by using ML to assess
equipment data and anticipate issues before they occur. To
comprehend how ML is applied in predictive maintenance,
one must be familiar with its fundamental ideas and
techniques. In essence, ML is a branch of Al that allows
systems to learn and get better over time as they get more and
more data without explicit programming [11]. The main goal
of ML is to develop algorithms that can recognize patterns,
decide, and forecast results from incoming data. This factor is
especially important in sectors where equipment durability
and efficiency are crucial, in the gas and oil industry. The three
main categories that include a variety of ML methodologies
are supervised learning, unsupervised learning, and
reinforcement learning.

Feature i
Input . Traditional ML Output
(Raw Data)}[gxgzlc:cmndj{ iz }[ Algorithm (Target)

Traditional Maching Learning Flow

Input
(Raw Data)

Qutput

Deep Learning (DL) Algorithm (Target)

Degp Learning Flow
Fig. 3. Flow of Traditional ML and DL Based Methods

The classical ML and DL pipelines, as depicted in Figure
3 [12]. In traditional ML, the explicit processing of the data
involves feature extraction and selection prior to the execution
of algorithms to produce outputs, whereas in processing raw
input data via layered models in DL, relevant features are
automatically learned in producing relevant target outputs
without human intervention.

B. Machine Learning (ML) Techniques for PdM

The core technology of artificial intelligence (Al) is
machine learning (ML), and the advancement of intelligent
systems depends on its algorithms [13]. The existence of
large-scale data has allowed the broad adoption of ML in a
variety of areas, and predictive maintenance (PdM) of
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industrial equipment has been one of them. One of the most
promising fields in which data-driven approaches may be
applied is PdM, and the use of ML leads to the possibility of
predicting failures and optimizing maintenance schedules
[14]. Classical algorithms, such as LR, SVM, DT, and RF,
have been widely used in PdM because they have been shown
to be highly effective algorithms for classification and
regression tasks. They are commonly used in favor of their
simplicity, interpretability, and efficiency, although other
more complicated and high-performance algorithms are being
increasingly developed. Thus, while advanced deep learning
and hybrid models are gaining traction, simple yet robust ML
techniques remain a practical choice in many PdM scenarios,
especially where computational efficiency and explain ability
are critical.

e LR Model: In machine learning, one of the most used
classification models with the simplest technique is
logistic regression (LR). Since it is supervised
learning, the gathered data must be labelled in order
to be included in the model. Moreover, the LR model
employs a nonlinear function to convert a linear
combination of input properties, ensuring that each
output falls between 0 and 1, thereby enabling a
probabilistic interpretation.

e SVM Model: Binary classification challenges are
often addressed by the Support Vector Machine
(SVM) model. SVMs have been frequently used in
PdM of industrial equipment to determine a specific
state based on the signals collected. Furthermore, the
SVM model can be applied to multiclass problems, as
the provided feature types are varied, and low-
dimensional features can be mapped onto
hyperplanes.

e DT and RF Model: In several fields, including
character identification, medical diagnosis, and
speech recognition, the application of decision tree
(DT) classifiers has proven highly effective. Most
importantly, a DT model can repeatedly break down
covariate space into subspaces to provide a probable
and understandable solution. Consequently, a
complicated decision-making process might be seen
as a series of challenging decisions. Moreover, the
Random Forest (RF) approach is a DT classifier in an
ensemble learning collection, and each tree
determines the program's overall classification.

C. Deep Learning (DL)Techniques for PdM

In this section, the author provides an introduction to DL
and highlights the most popular architectures in the context of
predictive maintenance (PdM). After the past years, DL
models have demonstrated better performance than the
conventional methods of statistical and machine learning
when plentiful historical data are accessible [15]. DL is a type
of ANN inspired by how the human brain functions, extending
beyond shallow networks with only one or two hidden layers
to deeper architectures capable of capturing complex patterns
in data.

e ANNSs are composed of neurons that create outputs
using non-linear activation functions like rectified
linear units (ReLU) and sigmoid, or tanh, and perform
linear regressions on inputs using weights. To
translate input data into output data, the network's
parameters are typically initialised randomly and then
modified based on the training dataset. Combining the
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gradient descent approach with the backpropagation
algorithm facilitates this learning process. These
allow for the calculation of each neuron's
modifications in relation to the network's error output,
which is determined using the user-defined cost
function.

e Convolutional neural network (CNN) uses
convolutional filters to preserve the neighbourhood of
neurons in this kind of feedforward network [16].
Drawing inspiration from the visual brain of animals,
it finds use in a variety of fields, including signal and
image identification, recommendation systems, and
NLP. To provide non-linear output, an activation
function is applied after the convolutional layer,
which is typically linear.

e Recurrent neural network (RNN) models Temporal
information by keeping track of the state derived from
the network's previous inputs. An adaption of
conventional backpropagation for temporal data, the
back-propagation over time technique spreads the
network’s mistake to earlier time occurrences.

D. Industrial Applications
Here are the industrial applications are as follows:

1) Manufacturing and Assembly Lines

In modern manufacturing environments, predictive
maintenance is applied to monitor machines such as motors,
bearings, conveyors, and robotic arms. By analyzing
vibration, acoustic, and thermal data, ML models can detect
early signs of wear, reduce unexpected breakdowns and
ensure smooth production. PdM in assembly lines helps
minimize downtime, improve product quality, and optimize
scheduling of repairs.

2) Oil & Gas Pipelines and Drilling Rigs

The oil and gas industry is particularly vulnerable to
equipment failures, which can lead to costly downtime,
environmental damage, or safety hazards. Predictive models
are used to detect leaks, corrosion, or abnormal pressure in
pipelines, as well as mechanical failures in drilling rigs. In this
vital sector, data-driven PdM reduces maintenance costs,
improves safety, and permits proactive interventions.

3) Power Plants and Energy Systems

In energy generation, whether it is traditional power
plants, wind turbines, or solar arrays, PdM is crucial in
maintaining a stable power supply. Predictive models can
identify cracks in turbine blades, generator faults, and
transformer degradation before disastrous failures occur.
These applications can be used to improve the reliability of
assets, provide longer equipment life lows as well as help in
producing sustainable energy.

4) Aerospace and Transportation

The transportation and aerospace industries require great
safety and dependability. PdM is used extensively on aircraft
engines, avionics systems and railway parts like rail wheels
and rail brakes. The frequent surveillance and ML-assisted
fault prediction optimize flight delays and enhance the safety
of passengers and optimization of maintenance schedules,
where it is imperative to abide by stringent safety rules.

5) Smart Factories (Industry 4.0 Context)

Safety and reliability are required in the aerospace and
transportation industries. PdM is extensively limited to the
engine of aircraft, avionics, and railway equipment, like
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wheels and brakes. Constant monitoring and predicting of
faults using ML decreases the time loss in flights, increases
patient safety and optimizes by maintaining schedules and
facilities, which is in line with the high standards of safety.

IV. EVALUATION METRICS AND CHALLENGES IN PREDICTIVE
MAINTENANCE

The metrics and challenges of predictive maintenance
(PdM) evaluation are crucial for presenting objective evidence
of the model's practicality and relevance in the actual world.
Among the evaluation measures used in classification are F1-
score, recall, accuracy, and precision. In the case of
maintenance systems, consider measures such as MTBF,
MTTR, MTTF, OEE, and failure rate. The metrics used to
measure the dependability of the system performance [17].
Although PdM use can have many benefits, obstacles to its
implementation exist. Principles and organizational expenses
are significant, and skilled human operators are usually
required to carry out repairs due to human error. There can be
great restrictions on data in the initial stages of adoption or
implementation. Such obstacles should be overcome to make
the most of the Industry 4.0 maintenance strategies.

A. Common Evaluation Metrics

The most frequent measurement combinations that are
frequently used to identify the performance of predictive
maintenance models are as follows:

Accuracy: One of the most popular assessment metrics
used to determine the performance of classification algorithms
is accuracy. The expression for classification accuracy is
found in Equation (1):

TP+TN
TP+TN+FP+FN

(1)
Precision: A classifier is an absolute measure of how
correct classification is once a prediction stage has been made.

True positives (TP) divided by the total of TP and FP is the
assessment metric, as shown in Equation (2) below:

Accuracy =

Precision = —— 2
TP+FP
Sensitivity: Recall, or sensitivity, is a parameter of how a
classifier goes about identifying positive instances. As seen in
Equation (3) below, it determines the proportion of
successfully recognized positive cases by dividing TP by the
sum of TP and FN:

Recall = —4— 3)
TP+FN

F1-Score: The F1-score, a statistic used in classification
approaches to describe a model's overall performance, is the
harmonic mean of accuracy and recall [18]. The measure is a
number between 0 and 1, with a high number denoting
excellent classification performance and a low number
denoting subpar classification performance. Equation (4)
provides the F-score:

F1— Score = Z*Pre'ci'sion*Recall (4)
(Precision+Recall)

These assessment indicators present a balance between the
accuracy, topicality and thoroughness of predictions in the
evaluation models of predictive maintenance. The
combination of them makes sure the classification
performance is well measured under various scenarios of
faults.
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B. Mean Time Between Failures (MTBF) and Maintenance-
Specific Metrics

Mean Time between Failures (MTBF) and other metrics
related to maintenance are necessary to measure the strength
of a system as well as the efficiency demonstrated by its
maintenance. These measures are used to estimate life of the
equipment and the optimization of maintenance.

1) Mean Time Between Failures (MTBF)

MTBEF is often regarded as one of the most significant
reliability parameters in predictive maintenance. It is an
equivalent of the average working life of a system or part
between two failures and is expressed as in Equation (5):

Total Operational Time

MTBF = Q)

The increasing MTBF value denotes longer periods of
equipment operation without unexpected shutdowns. In
predictive maintenance, the main target is to prolong MTBF.
The longer this value is, the better monitoring systems
perform, and the more effectively the machine learning model
predicts failures before they occur [19]. TBF is especially
suited for comparing systems' maintenance strategies and
tracing the reliability of a system as it ages.

Number of Failures

2) Maintenance-Specific Metrics

In addition to the MTBF, there are several other
maintenance metrics that are commonly employed by
maintenance professionals to define system performance and
reliability:

e Mean Time to Repair (MTTR): Average time
required to restart machinery following a
malfunction.

e Mean Time To failure (MTTF): Average time
equipment operates until the first failure, non-
repairable systems.

e Overall Equipment Effectiveness (OEE): A
combined measure that takes into account product
quality, performance efficacy, and availability.

e  Failure Rate (A): The number of failures recorded per
time period. Commonly used in reliability
engineering.

e Availability Ratio: The amount of time in which a
piece of equipment is operational compared to the
entire observation period.

C. Key Challenges of Predictive Maintenance

It seems certain that Industries have embraced predictive
maintenance, but obstacles stand in the way of its general
application as a prudent maintenance method [20]. Even
though predictive maintenance algorithms are now available,
businesses hoping to take advantage of Industry 4.0 still have
to weigh the upfront expenses of purchasing the necessary
tools, software, and expertise against the possibilities of
predictive maintenance [21]. When predictive maintenance is
just getting started and there is little to no real information on
typical and unusual equipment performance, this drawback is
most noticeable. This is particularly true when designing new
systems, as there is no prior knowledge of how they operate.

1) Financial and Organizational Limits

The expenses of each new investment must be carefully
considered by for-profit businesses. Installing sensors,
gathering data, creating and maintaining models, and
performing maintenance tasks are all costs associated with
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implementing predictive maintenance (PdM). The kind and
complexity of the equipment, the sophistication of the sensors,
consultation and installation fees, and whether the necessary
knowledge is available internally or needs to be acquired
externally are just a few of the variables that can significantly
affect these expenses.

2) Machine Repair Activity Constraints

Estimating a component's remaining useful life (RUL)
enables more effective maintenance scheduling; however, the
actual repair process remains constrained by human
involvement and the absence of autonomous self-
maintenance. Since the majority of machine components still
require manual supervision and intervention, the skill level
and managerial calibre of human operators have a significant
impact on how well maintenance works. Industrial machines,
in particular, function reactively by executing predefined
commands and do not have the capacity to independently
question or adapt maintenance plans.

3) Data Source Limits

To create a production process management model,
pertinent data must be available. But when businesses first
introduce production process management, they almost never
have all the necessary information. The holes must be
identified and filled using the available data.

V. LITERATURE REVIEW

In this section, a literature review of predictive
maintenance in industrial systems has been provided with
emphasis on ML and DL methods, integration of IloT,
quantum-enhanced systems, anomaly detection, Remaining
Useful Life (RUL) prediction, and digital twin design as the
means of enhancing accuracy, scalability, and sustainable
industrial operations.

Pandey et al. (2025) discuss a predictive methodology that
utilizes real-time data from motor-mounted temperature,
vibration, and current sensors. Advanced algorithms analyze
the data to identify unusual patterns and predict when
equipment may fail, allowing for preventive repairs before any
issues arise. The ML algorithms in predictive maintenance
systems are typically used to predict equipment failures. At
least in terms of comparing the algorithms, the highest quality
of the prediction of motor failures can be seen in the method
known as Random Forest (RF). By facilitating more effective
scheduling and informed decision-making, Predictive
maintenance using data can drastically reduce maintenance
costs and downtime. Industrial motor maintenance may be
enhanced by integrating MQTT messaging, ML, and
technology for the 110T. This is consistent with Industry 4.0's
goals for environmentally friendly [22].

Chouhan et al. (2025) discuss the integration of quantum
algorithms on Google Quantum Al for optimising 110T-based
predictive maintenance systems. Faster data processing is
made possible by methods such as quantum k-means
clustering and quantum support vector machines (QSVM),
which further enhance the accuracy of the anomaly detection
process. Techniques such as the Quantum Approximate
Optimization Algorithm (QAOA) help optimize schedules for
maintenance and resource allocation, thereby reducing
downtime and operational costs. Therefore, quantum
simulations do better forecasts with the proper handling of
equipment wear and material degradation, which enables
proactive maintenance actions. Sustainably implemented
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guantum-fortified techniques are expected to yield the fewest
false positives, minimize unplanned downtime events, and
optimize maintenance resource usage [23].

Juliet's (2025) strategy plans maintenance to reduce
downtime and maximise operational effectiveness. The fact
that inaccurate forecasts and false alarms might result from
low-quality data, it challenging to obtain reliable, consistent,
and well-integrated 10T sensor data. Scaling real-time fault
detection and prediction requires substantial computational
power and optimized algorithms to process the continuous
influx of data from multiple machines. To address data quality
and integration issues while enhancing real-time processing
and scalability, a Custom Neural Network technique can be
used to improve loT sensor data accuracy and consistency,
and efficiently manage the computational demands of
continuous data influx for fault detection and prediction. The
proposed system, leveraging an extended Neural Network
technique, enhances prediction accuracy by efficiently
managing diverse industrial datasets and improves real-time
fault detection through optimized data processing and reduced
latency [24].

Razzaqg, Jazzel Mehmood and Khan (2024) intend to
compare basic regression and ARIMA models to investigate
RNNs' potential for predictive maintenance in a use case
involving industrial machinery. It also highlights the
significant  improvement RNNs make over the
aforementioned strategies. This research also proposes an
extension of the existing virtual reality-based digital twin
architecture to incorporate automated predictive maintenance
of the machine. Moreover, the proposed digital twin
architecture serves as a foundation for the automated
predictive maintenance of any product. Smart manufacturing
in Industry 4.0 has come about due to digital twin technology
[25].

Narayanan et al. (2024) analyze predictive maintenance
using ML across a number of industries. It describes the
methodology for gathering and pre-processing information
from various sensors and equipment logs, as well as the
important process of feature engineering to isolate meaningful
aspects of the information. All relevant approaches to ML
algorithms and the methods for training the model are
discussed in detail. Additionally, the study highlights the
crucial role of anomaly detection strategies in the early
identification of failures, enabling timely preventive
intervention in the event of machinery failures. The main
focus of this effort is on developing predictive maintenance
models that calculate the equipment's remaining useful life
(RUL). RUL projections are discussed when determining the
thresholds of the maintenance operations, and they are aimed
at balancing performance and costs [26].

Jadhav et al. (2023) investigate industrial machinery
predictive maintenance. Using a Google form, collected
several opinions from specialists in the fields of ML, 10T, and
Information Technology. Learned from this survey that if
don't take any proactive steps to maintain industrial
equipment, a lot of rubbish is produced, which further
contributes to pollution and several other issues, including a
lack of equipment and many others. 10T is extensively utilised,
and gadgets are common in many different businesses.
Industrial 10T uses sensors and 10T devices to keep an eye on
surrounds and equipment, ensuring the optimal functioning of
equipment and processes. Predictive maintenance, which
monitors equipment health to forecast component breakdown,
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is one industrial 10T solution that has lately attracted attention.
Effective Predictive Maintenance is made possible by using
ML algorithms to gather, analyse, and interpret vast volumes

Table | presents a summary of the literature review,
highlighting the focus, approach, key findings, challenges,

and proposed future directions of each study.

of data [27].
TABLE I. COMPARATIVE ANALYSIS OF LITERATURE REVIEW ON MACHINE LEARNING FOR PREDICTIVE MAINTENANCE IN INDUSTRIAL SYSTEMS
Reference Study On Approach Key Findings Challenges Future Direction
Pandey et al. | Predictive maintenance | Machine Learningwith | RF  shows highest | Ensuring real-time | Enhance integration
(2025) using vibration, current, | Random Forest | accuracy in predicting | accuracy and handling | with  IloT  and
and temperature sensors | algorithm for anomaly | motor failures diverse data streams optimize  decision-
on motors detection making

predictive maintenance

Chouhan et al. | Quantum algorithms for | Quantum SVM, | Quantum methods | Quantum algorithms | Expand use  of

(2025) lloT-based predictive | Quantum  K-means, | improve speed, | require advanced | quantum ML in
maintenance and QAOA  for | scalability, and reduce | infrastructure and | industrial predictive

optimization false positives integration maintenance

Juliet (2025) Custom Neural Network | Extended Neural | Improved loT data | Scalability and | Enhance loT fault
for 10T sensor data | Network for improved | consistency and | computational load for | detection scalability
quality and real-time | data accuracy and | reduced latency inreal- | continuous loT data | with optimized NN
fault detection processing time fault detection streams

Razzaq, Jazzel | RNNs for predictive | Comparative analysis | RNNs outperform | Complexity in | Further enhance VR

Mehmood and | maintenance and | of RNNs, Regression, | regression and | integrating VR digital | digital twins for

Khan (2024) integration with digital | and ARIMA with VR- | ARIMA, VR digital | twin with predictive | general  industrial
twin based digital twin twin enhances | maintenance use

Reactive and preventative maintenance methods have

given way to predictive maintenance (PdM) as a result of

Industry 4.0.

Utilizing real-time sensor data, including

vibration, temperature, and current, PdM lowers operating

costs,
downtime.

increases equipment availability, and minimizes
In defect detection, anomaly identification, and

ML and DL models like RF, SVM, CNN, and RNN have

demonstrated

exceptional performance in estimating

Remaining Useful Life (RUL). Beyond traditional methods,
integration with Industrial 10T platforms, digital twins, and
emerging quantum-based algorithms provides enhanced
scalability, faster computation, and improved sustainability in
industrial systems. These developments enhance safety,
dependability, and resource efficiency, while also facilitating
optimal decision-making. However, issues such as uneven
data quality, high processing demands, and implementation
expenses —whether monetary or organizational —continue to
be major obstacles. Future research should concentrate on
creating energy-efficient prediction models, scalable, and
interpretable. Advancements in quantum ML, digital twin
integration, and sustainable loT frameworks can enhance
reliability. However, addressing data gaps, standardization,
and cybersecurity remains critical for robust real-time
industrial adoption. Moreover, greater emphasis on transfer
learning and federated learning can enable knowledge sharing
across industries. Collaborative human—Al systems will
further ensure trust, adaptability, and widespread use of
solutions for predictive maintenance.
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