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Abstract—The rapid advancement of smart grids has revolutionized modern energy distribution by integrating renewable energy 

resources, distributed generation, and advanced communication technologies. However, the growing complexity, interconnectivity, 

and cyber-physical integration have made smart grids increasingly vulnerable to various anomalies, including equipment failures, 

cyber-attacks, load forecasting errors, and sensor malfunctions. This paper presents a comprehensive survey of state-of-the-art 

techniques for anomaly detection in smart grids, with a focus on artificial intelligence (AI), hybrid frameworks, and semantic 

modeling approaches. A wide spectrum of AI-driven methodologies—such as cross-modal collaborative learning, hierarchical 

semantic representations, physics-informed hybrid algorithms, and deep learning architectures—are systematically reviewed to 

highlight their roles in improving cybersecurity, fault diagnosis, energy theft prevention, and real-time monitoring. The study also 

examines the inherent challenges posed by heterogeneous grid infrastructures, diverse data sources, and evolving threat landscapes. 

Furthermore, the survey identifies emerging directions for designing scalable, explainable, and adaptive anomaly detection 

frameworks integrated with real-time analytics, privacy-preserving mechanisms, and standardized benchmarking datasets. By 

synthesizing current advancements and open challenges, this work provides a structured foundation to guide future innovations in 

secure, resilient, and intelligent smart grid ecosystems. 

Keywords—Smart Grids, Anomaly Detection, Artificial Intelligence, Machine Learning, Cybersecurity, Real-Time Monitoring, Fault 

Diagnosis. 

I. INTRODUCTION 

Smart Grid technologies and their integration with 
improved communication infrastructure, distributed energy 
resources (DER), renewable energy production and systems, 
and demand-side management have contributed greatly to 
power system management transformations in the 
contemporary world [1][2]. In contrast to traditional grids, 
Smart Grids facilitate two-way power flows and real-time 
information exchange, enabling decentralized generation and 
dynamic load management. These new developments 
maximize efficiency, economics and consumer involvement 
in the energy markets. Moreover, the popularity of electric 
vehicles and devices and appliances enabled by the Internet of 
Things, become the true bearers of the unprecedented 
automation and smarts in the operation of the grid, and that is 
to make the latter exceedingly complex [3][4]. 

The additional complexity though comes with major 
vulnerabilities. Smart Grids are increasingly at risk of cyber-
attacks, failure of equipment, data modification and other 
uncoordinated grid characteristics [5], a factor that has the 
potential to jeopardize stability, reliability and security of 
power systems. To maintain a stable operation, it has become 
important to create a means through which anomaly detection 
can occur, suitable enough to identify and rectify them in real-
time [6]. 

Artificial intelligence (AI) has emerged recently and is 
widely recognized in Smart Grid anomaly detection [7][8] to 
address these challenges. The AI-based techniques can easily 
extract hidden patterns and abnormal behaviours in a complex 
stream of data using large-scale, heterogeneous, and high-
dimensional data captured by sensors, smart meters, and 
monitoring devices [9]. Yet, as much as data-based methods 

are effective in the detection of patterns, physics-based models 
provide the necessary mechanics required to fully describe the 
dynamics of operations present in a cyber-physical system 
(CPS). Hence, an AI-hybrid approach that combines physics-
based knowledge with physics-deficient algorithms can 
provide a stronger, nonlinear, and scalable framework for 
anomaly detection in Smart Grids [10]. 

Machine learning, deep learning, reinforcement learning, 
and hybrid models are the AI methods most often used in this 
area. They are used for fault detection, load forecasting, 
intrusion detection, energy theft protection, and real-time 
monitoring [11]. Additionally, the prospect of implementing 
AI-based practices on edge-to-cloud platforms enables near 
real-time detection and response, thereby facilitating faster 
mitigation of anomalies and enhancing the cyber-resilience of 
grid infrastructures. 

These advancements notwithstanding, there are still 
unaddressed challenges. Some of the most significant 
challenges are the absence of unified datasets, the inability to 
distinguish between the natural variations and the real 
anomalies, the challenge of designing big systems that 
connect, and the limited interpretability of the AI models [12]. 
Moreover, Smart Grids are highly dynamic, distributed 
systems that are vulnerable to advanced malicious attacks, and 
establishing adaptive, interpretable, and robust detection 
frameworks is therefore paramount [13]. To overcome these 
issues, need the latest algorithms, standardized testing 
environments, explainable AI approaches and field-
deployment strategies. Moreover, interdisciplinary research, 
with the help of policy and industry-academia engagement, is 
also essential to close the growing divide between academic 
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improvement and actual application of anomaly detection 
solutions in Smart Grids. 

A. Structure of the Paper 

The structure of this study is organized as follows: Section 
II highlights the significance of smart grids and predictive 
maintenance. Section III defines the types of anomalies in 
smart grids. Section IV discusses AI techniques and 
implementation challenges. In Section V, the current research 
on anomaly detection is examined.  Finally, Section VI ends 
with some thoughts and suggestions for future study. 

II. SMART GRIDS AND THEIR IMPORTANCE 

Integrating state-of-the-art communication, automation, 
and information technology with conventional power grids, 
smart grids are the logical next step for electrical power 
systems [14]. Smart grids allow utilities and consumers to 
communicate with each other in two ways, unlike traditional 
grids. Increased dependability, efficient energy distribution, 
and real-time monitoring are all made possible by this [15]. 
Smart grids are gaining significance in addressing the 
worldwide demand for sustainable and reliable energy 
infrastructure as a means to optimize energy usage, 
incorporate renewable resources, and guarantee system 
stability. 

 

Fig. 1. Smart Grid Technology 

Figure 1 illustrates the technological ecosystem of smart 
grids, highlighting the interconnectedness of generation, 
transmission, distribution, and consumption. It also shows the 
integration of renewable sources, intelligent substations, and 
consumer-side innovations like smart meters and EV 
charging, reinforcing the importance of smart grids in 
achieving efficiency and sustainability. 

A. Smart Grid Components 

Smart grids are built upon a wide range of interconnected 
components that collectively ensure reliable, secure, and 
efficient energy distribution [16]. The features enable real-
time monitoring, Fault Management, and Renewable Energy 
integration, as well as consumer active participation in Energy 
Management. Some of the most important elements in 
building today's smart grid infrastructure are: 

• Transformers: Transformers that increase or reduce 
voltage levels to transmit and distribute power and get 
power to customers safely and economically.  

• Circuit Breakers: Protective devices that shut off 
electricity in the event of faults, or overloads thus 
preventing damage and ensuring safety.  

• Sensors: The grid is embedded with sensors to 
continuously monitor the parameters of voltage, 
current, temperature and the environment. 

• Smart Meters: Consumer premise devices that 
measure electricity use at a high resolution (enabling 
dynamic pricing, demand response and enhanced 
consumption analytics). 

• Communication Networks: Support two-way data 
exchange between grid parts and control centers, 
necessary for real-time monitoring and control. 

• Energy Storage Systems and Distributed Energy 
Resources (DERs): The integration that can be 
presented includes batteries, solar, and wind turbines 
to enable the grid to be more flexible and use 
renewable energy sources. 

These elements allow conventional power grids and new 
forms of distributed energy resources to work together 
seamlessly; they are the backbone of smart grid architecture 
[17]. With the ability to connect intelligent sensing and 
storage technologies, as well as communication, the grid 
becomes an adaptable, two-way system that is user-centric. 
Figure 4 provides the best representation of this 
transformation, which has evolved into a decentralized, 
participatory, and flexible smart grid. 

 

Fig. 2. Decentralized Smart Grid Future 

Figure 2 illustrates a shift in the smart grid towards 
decentralized, consumer-controlled power systems, replacing 
more conventional power systems. There is a distinct shift in 
the modern energy system paradigm as opposed to the 
previous model of a few large power plants and command-
and-control structure, and the future grid is that of a utility grid 
with distributed energy resources, local power generation and 
consumer involvement, also known as a proactive 
participation by the consumer in their utility grid. 

B. Common Failure Modes and Maintenance Challenges 

The infrastructure that comprises the smart grid is highly 
susceptible to operational malfunctions and maintenance-
specific concerns, despite being advanced and data-driven. 
These failures may arise from equipment aging, 
environmental stress, cyber intrusions, or system complexity 
[18]. Addressing these challenges is crucial for ensuring 
reliable electricity delivery, maintaining grid reliability, and 
facilitating the sustainable integration of renewable energy 
sources. The key failure modes and challenges are: 

• Transformers: Insulation degradation, overheat and 
mechanical wear down can cause the failure.  
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• Circuit Breakers: Contact wear, coil failures, and 
mechanical failure may be the cause of operational 
problems. 

• Sensors and Smart Meters: Calibration drift, 
communication fault, and sensor dust contamination 
decrease data reliability. 

• Communication Systems: Grid control can be 
compromised by Network latency, hack attacks, and 
hardware failures. 

Maintenance issues are compounded by distributed assets, 
restricted access, voluminous heterogeneous data, and the 
requirement to ensure that downtime is absolutely minimal 
without affecting safety and reliability. Ensuring reliability 
and efficiency of smart grid components helps ward off 
outages and minimize costs, and consumer safety also 
enhances consistency, enhancing renewable integration and 
asset life. These issues highlight the importance of 
sophisticated strategies, such as predictive maintenance, to 
ensure the grid remains sustainable in its performance. 

C. Predictive Maintenance in Smart Grids 

Predictive maintenance in smart grids emphasizes 
anticipating equipment failures before they occur by 
analyzing condition-monitoring data, usage patterns, and 
performance indicators [19]. It is also an aggressive program, 
which not only reduces unplanned outages but also maximizes 
the use of resources and vital grid assets. Predictive strategies 
are not a new concept within the energy sector, and they are 
making utilities face reliability issues in the steady system 
developed with the help of more traditional methods. 

Conventional maintenance strategies have always been at 
the center of the grid operations, but it is limited in comparison 
to the predictive strategies. On the one hand, reactive 
strategies do not implement measures until an issue arises, 
resulting in disruptions of services and associated downtime. 
Preventive strategies, on the other hand, compel regular 
checkups irrespective of the health of the equipment, which 
results in the waste of resources. To better clarify the 
distinction of predictive maintenance, one can discuss with the 
help of these two common practices that have defined 
maintenance in smart grids, as presented below: 

• Reactive Maintenance: This maintenance method is 
to do repair or replacement of equipment after a failure 
has occurred. It is easy to install, but it can cause 
unplanned downtime, costly repairs, and pose safety 
issues.  

• Preventive Maintenance: The plan involves the set 
maintenance at fixed intervals irrespective of the 
usefulness of the equipment. The purpose of 
preventive maintenance is to mitigate failures by 
actively maintaining the assets but it can cause an 
overload by unnecessary maintenance actions, labor 
costs, and inefficiencies in resources.  

Predictive maintenance is smarter than reactive and 
preventive maintenance, as it focuses on predicting failures 
before they occur. That makes utilities shift toward expensive 
and unplanned interventions to timely and effective measures. 
The most important predictive maintenance benefits are as 
follows: 

• Early Fault Detection: Catching problems at the early 
point of development to avoid the disastrous outcomes.  

• Optimized Maintenance Scheduling: Conducting 
maintenance, however, only when the need arises 
thereby minimizing downtime and the associated 
operating costs.  

• Extended Asset Lifespan: Keeping equipment in an 
optimal state of operation extends its lifetime.  

• Improved Reliability and Safety: Reduction of the 
sudden outages reinforces the grid stability and 
safeguards the people and infrastructure.  

• Data-driven decision-making: Using sensor data and 
the application of AI models to aid in proactive 
maintenance strategies.  

• In general, predictive maintenance is a very important 
improvement non-traditional methods and the process 
of maintenance is harmonized with the needs of smart 
grids. 

III. ANOMALY DETECTION IN SMART GRIDS AND ITS TYPES 

Anomaly Detection in Smart Grids refers to the 
identification of unusual patterns or behavior in the grid data 
suggesting fault, cyber-attacks or failure of equipment. It 
relies on high-performance analytics and machine-learning 
computation to perceive real-time input from sensors, smart 
meters, and control frameworks. Effective anomaly detection 
aids in improving the grid power reliability, efficient energy 
distribution, for the improvements on fault diagnosis in the 
grid power system inspection and on the efforts of grid power 
system security. 

A. Types of Anomalies in Smart Grids 

Smart grids comprise digital communications, sensing, 
and control technologies that power and enhance the 
management of electricity. They, however, are complex and 
interconnected and open themselves to several anomalies. 
These anomalies when not detected can compromise 
performance--or disturb services or even cause major failures. 
The following is what may be described as constituent 
categories of anomalies that are likely to be found in smart 
grids: 

1) Equipment Failures 
Equipment failures are one of the most common and 

serious problems in smart grids [20]. They may occur due to 
the aging of equipment, manufacturing flaws, failure to 
service it, or due to some other kind of damage during severe 
weather. Examples include transformers failing due to 
overheating or blown insulation, circuit breakers not properly 
isolating faults, and power line faults or outages caused by 
physical damage or wear. There is a risk of causing blackouts, 
instability in voltage, and poor power quality, which can 
impact both customers and utility companies. Condition 
monitoring and AI-based predictive maintenance can enhance 
the ability to detect problems early, preventing downtime and 
significantly reducing maintenance costs. 

2) Cyber-Attacks and Intrusions 
Cyber-attacks and intrusions pose substantial threats to 

smart grids, as they target the digital and communication 
systems of these grids. Hackers can gain unauthorized access 
to control systems, disrupt operations, steal sensitive data, or 
manipulate grid functions [21]. Common attacks include 
malware infections, DoS attacks, and phishing schemes. 
These may trigger power outages, lead to damage to 
equipment, or trigger the liability and security of the grid. 
Preventing cyber-attacks on smart grids is crucial to deploying 
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effective cybersecurity practices, such as encryption and real-
time monitoring and response, to intercept an intrusion in time 
before it develops into significant damage. 

 

Fig. 3. Cyber Attacks and Intrusions 

As shown in Figure 3, smart grids/control centers are 
subject to cyber-attacks like malware, DoS attacks, and 
phishing, causing such problems as power failure, data loss, 
and destruction or damage of equipment. It also indicates main 
defense techniques, such as encryption, monitoring and 
incident response. 

3) Load Forecasting Errors 
Forecasting Errors: The error between the actual electrical 

load consumed and the forecasted load values generated by a 
forecasting model is called an error in forecasting. These 
errors arise because load demand is influenced by numerous 
dynamic factors such as weather conditions, consumer 
behaviour, economic activity, and system disruptions, which 
are often difficult to predict precisely [22]. Since reliability 
issues, poor resource use, and hefty fines can result from 
inaccurate load forecasts, accurate load forecasting is crucial 
for power system operation and planning.  The performance 
of the forecasting model can be assessed and enhanced using 
common metrics, such as RMSE and MAPE, which measure 
load forecasting errors.  An assortment of statistical models, 
ML techniques, DL algorithms, and other load forecasting 
tools has been standardised in an effort to cut down on these 
kinds of mistakes.  

 

Fig. 4. Load Forecasting Techniques 

Figure 4 illustrates a hierarchy of load forecasting methods 
based on prediction horizon, with short-term, medium-term, 
and long-term approaches depicted. Smart grid planners and 
managers are primarily interested in medium-term 
forecasting. 

4) Sensor Malfunctions and Data Inconsistencies 
It refers to errors or irregularities in the data collected from 

sensors due to hardware faults, communication issues, or 
environmental interference. Sensor malfunctions can cause 
incorrect, missing, or noisy measurements.[23] , while data 
inconsistencies arise when the recorded data does not align 
logically over time or between related sensors. These issues 
can severely impact the accuracy and reliability of systems 

that depend on sensor data, such as monitoring, control, and 
forecasting applications. Validating, filtering, and correcting 
techniques are essential for identifying and correcting sensor 
malfunctions and data inconsistencies, ensuring data integrity 
and maintaining system performance. 

IV. ANOMALY DETECTION TECHNIQUES AND SUPPORTING 

TOOLS IN SMART GRIDS 

The dynamic nature of modern smart grids makes them 
highly susceptible to a wide range of anomalies, including 
cyber intrusions, equipment malfunctions, and irregular 
consumption patterns [24]. Traditional monitoring systems 
often fail to capture these irregularities in real time due to the 
scale and complexity of smart grid infrastructures [25]. Thus, 
anomaly detection has become a vital function for providing 
reliability, efficiency, and resilience. AI, machine learning, 
and statistical analysis enable the detection of anomalies 
proactively, preventing potential large-scale impacts on other 
activities that may affect grid stability, data protection, or 
service disruption. 

The tools and platforms supporting these techniques can 
also be considered vital. The errors detected by anomaly 
detection models are ideally tested in practical environments, 
simulated environments, big data frameworks, and cloud 
platforms. These tools both enable large-scale 
experimentation, as well as provide support for integrating 
heterogeneous data sources, including smart meters, sensors 
and communication networks. Combined, technology and 
tools are the synergy of smart grid intelligent anomaly 
detection systems. 

A. Anomaly Detection Techniques in Smart Grids 

Anomaly detection in smart grids plays a vital role in 
ensuring reliability, safeguarding infrastructure, and 
preventing disruptions caused by faults or malicious activities 
[26]. By identifying irregularities at an early stage, operators 
can take proactive measures to maintain stability and security 
[27]. The most recent developments employ statistical and AI-
based models, as well as hybrid architectures, to enable 
increased scalability and accuracy across a wider range of 
operating conditions. The detection methods of anomaly are 
presented below: 

• Machine Learning (ML) Techniques: Anomaly 
classification and pattern recognition using 
supervised and unsupervised learning techniques. 

• Deep Learning Models: Neural networks such as 
CNNs and RNNs for capturing spatial-temporal 
patterns in grid data. 

• Federated Learning: Distributed model training that 
protects user privacy without transferring data files 
across devices. 

• Graph-Based Models: Utilize graph structure 
learning to detect complex interactions and anomalies 
in multi-source energy data. 

• Statistical Analysis: Traditional methods like mean, 
variance, MAE, MAPE, RMSE to detect deviations 
from expected patterns. 

• Hybrid AI + Physics-Based Modeling: Combine 
artificial intelligence with physical models for 
accurate and explainable detection. 

• Fuzzy Logic-Based Algorithms: Rule-based 
systems (e.g., Artificial Bee Colony + Fuzzy Logic) 
for handling uncertainty in smart grid environments. 
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• Transformer-Based Models: Used in video or 
sequence-based anomaly detection leveraging 
attention mechanisms. 

• Quantum AI and Neural Networks: Emerging 
technique integrating quantum computing for high-
accuracy forecasting and anomaly detection. 

B. Tools and Platforms 

The deployment of AI-driven anomaly detection in smart 
grids requires a strong technological foundation, 
encompassing both computational and simulation resources 
[28]. The tools can serve not only to efficiently manage 
tremendous amounts of grid data but also to design, train and 
validate intelligent models reliably and at scale. There are 
three groups of tools and platforms, which can be divided to 
meet the wide range of needs in utilizing anomaly detection 
instruments, as shown in Figure.5, are given below: 

 

Fig. 5. Tools and Platforms for Anomaly Detection  

1) AI Framework 
ML model construction, training, and deployment are all 

made possible by AI frameworks [29]. They reduce the 
complexity of complicated calculations, speed up 
experimentation, and enhance scalability, which is essential to 
the problem of anomaly detection in smart grids. The most 
usual frameworks are presented below: 

• TensorFlow: Deep Learning, an open-source 
framework created by Google, is extensively utilised 
for the construction and training of intricate neural 
network models. 

• PyTorch: A widely used and adaptable Facebook 
deep learning library [30] that is perfect for AI model 
development and testing in the wild. 

• Scikit-learn: A compact and powerful set of classical 
machine learning algorithms, ideal for use in 
prototypes and smaller to medium-sized projects. 

2) Big Data Tools 
Big data tools are essential in the management and 

processing of such vast amount of data in a smart grid. They 
provide flexibility in terms of being able to run anomaly 
detection systems in real time and have fault detection and the 
opportunity to scale. The tools used briskly include the 
following: 

• Apache Spark: ML model training on smart grid data 
is a common use case for this general-purpose, rapid 
cluster computing system [31]. 

• Apache Kafka: The ability to detect abnormalities in 
live smart grid systems relies on a distributed 
streaming platform that can install and monitor data 
in real-time. 

3) Smart Grid Simulators 
Smart grid simulators enable real-time, large-scale, open-

architecture simulations to accelerate smart grid development 

[32]. They minimize inefficiencies in group work, offer safe 
experimental tests of systems and processes, and offer a cost-
effective pre-deployment feedback, enhancing reliability and 
effectiveness and the implementation strategy. 

a) GridLAB-D 

The US Department of Energy developed this robust smart 
grid simulator so that anybody can model distribution 
networks, load patterns, market dynamics, and even the effects 
of weather.  It can let researchers evaluate anomaly detection 
methods and system reaction in a risk-free environment and is 
important for creating synthetic data to train AI models. 

b) Matpower 

Power system optimisation and simulation can be 
achieved with this open-source MATLAB tool [33].  Power 
flow and optimal power flow problems are solved using it, and 
it provides a reliable baseline for verifying anomaly detection 
models driven by AI. Its flexibility allows seamless 
integration with custom scripts and external machine learning 
frameworks, enabling advanced analytics and real-world grid 
behaviour validation. 

V. LITERATURE REVIEW 

The literature review section explores recent 
advancements in anomaly detection for smart grids, 
emphasizing artificial intelligence, hybrid techniques, and 
semantic modeling. It highlights methodologies, applications, 
and challenges, showcasing diverse AI-driven approaches 
enhancing detection accuracy, robustness, and cybersecurity 
in evolving energy distribution systems. 

Dong (2025) works deeply executes cross-modal 
collaborative learning and multi-level semantics 
representation for the data feature of multiple energy sources: 
Firstly, utilize the multi-channel attention mechanism to mine 
the correlation between energy consumption data in different 
models to realize the implementation of the weight attention 
of key features. Then, the hierarchical embedding network 
was used to map the multi-modal features to the high-
dimensional unified semantic space, the temporal information 
and spatial relations were captured through different levels. 
[34]. 

Gaggero, Girdinio and Marchese (2025) Machine learning 
techniques are being used more and more in anomaly 
detection methods. These techniques are a revolutionary tool 
for data analysis. This survey aims to examine Smart Grid 
anomaly detection strategies, with a focus on methods that 
integrate AI with physics-based modelling. This work 
provides a comprehensive review of the existing literature by 
analysing the algorithms, use cases, performances, and 
validation of published papers, as well as by pointing out 
important gaps in the literature and suggesting ways forward 
for this area of study [35].  

Anaraki et al. (2024) explore the peculiarity of low-
voltage (LV) grids, which are growing increasingly intricate 
as a result of the extensive use of decentralized power plants, 
electric heat pumps, and solar panels.  A variety of data-driven 
approaches, including methodologies like process grid data 
and statistical analysis as well as AI.  In order to uncover any 
substantial anomalies in their activities, the investigation 
attempts to identify unexpected variations in energy use, 
unauthorized photovoltaic systems, and rapid fluctuations in 
grid demand. The findings suggest that, taking into account 
the goals of grid operators and their ability to differentiate 
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between short-term and long-term abnormalities, one 
approach may be better suited than another [36] 

Guato Burgos, Morato and Vizcaino Imacaña (2024) 
Artificial intelligence is used to detect irregularities in smart 
grids. Searched digital archives for articles published between 
2011 and 2023. Studies with diverse techniques were 
considered, experiments were proposed, and the most applied 
methodologies were identified through iterative searches. 
Data integrity assaults, anomalous consumption and 
measurements, intrusions, electrical data, network 
infrastructure, cyber-attack detection, and detecting devices 
are the seven SG anomaly-related objects of investigation. 
Cybersecurity challenges have been the subject of much 
research, particularly in the fight against intrusions, fraud, data 
fabrication, and unchecked network model alterations [37]. 

Banik et al. (2023) Cybersecurity, fault detection, 
electricity theft, and many more areas can benefit from 
analyzing smart grid data for anomaly detection. Several 
factors could have contributed to the unusual and suspicious 
actions, such as customers' unusual usage habits, problems 
with the grid infrastructure, power outages, cyberattacks from 
outside sources, or energy fraud.  Academics have recently 
focused on smart grid anomaly detection, and it has found 
extensive use in a number of important sectors. An enormous 

challenge inside the smart grid is the implementation of 
reliable anomaly detection for all kinds of unusual behaviors. 
Aiming to cover both historical and current research on smart 
grid anomaly detection, this study compiles a literature 
catalogue [38]. 

Baker et al. (2022). This article discusses the problematic 
nature of PEDG's real-time anomaly detection and 
classification. The proposed approach to reaching ADS and 
ACS in real-time is based on integrating model predictive 
control (MPC) with long short-term memory (LSTM). Both 
the MPC and the LSTM detection network can make use of 
time-series input data for classification and anomaly 
correction. Future PEDG must have the capability to identify 
and repair power electronics' internal problems; here is where 
the proposed LSTM-MPC solution is useful; this will allow 
inverters' internal failures to be distinguished from anomalies. 
To enable PEDG to operate resiliently in the face of 
cyberattacks, it is necessary to identify and categorize internal 
faults such as an open circuit fault [39]. 

Table I provides a synopsis of current research on smart 
grid anomaly detection using artificial intelligence (AI), 
comparing various studies and highlighting their methods, 
results, limitations, and potential future research areas. 

TABLE I.  SUMMARIZES THE STUDY ON ANOMALY DETECTION IN SMART GRIDS USING ARTIFICIAL INTELLIGENCE 

Reference Study On Approach Key Findings 
Limitations / 

Challenges 
Future Research 

Dong 

(2025) 

Multi-modal energy 

source data analysis 

Cross-modal 

collaborative 

learning & multi-

channel attention 

Improved feature extraction 

and anomaly detection 

accuracy using unified 

semantic representation 

High computational 

complexity and 

scalability issues 

Optimize multi-modal 

feature learning for large-

scale smart grids 

Gaggero et 
al. (2025) 

AI & physics-based 

modeling in smart 

grids 

Survey on AI-

integrated anomaly 

detection methods 

Highlights hybrid approaches 

combining AI and physical 
modeling for enhanced 

detection 

Lack of real-time 

deployment insights; 

limited benchmarks 

Develop real-time 

frameworks integrating 
AI and physics-based 

models 

Anaraki et 

al. (2024) 

Low-voltage grid 

anomaly detection 

Statistical & AI-

driven techniques 

Effectively detects 

unauthorized installations and 
sudden load changes 

Dependence on grid-

specific objectives; low 
generalization 

Build adaptable AI 
models applicable across 

diverse LV grid 

topologies 

Guato 

Burgos et 
al. (2024) 

Anomaly detection 
in infrastructure and 

cybersecurity using 

AI 

Comprehensive 

literature survey 

Identifies major anomaly types 
(cyber-attacks, intrusions, 

energy fraud) and detection 

devices 

Limited experimental 

validations; lacks cross-
domain insights 

Incorporate hybrid AI 
models addressing 

cybersecurity and energy 

anomalies jointly 

Banik et al. 
(2023) 

Broad smart grid 
anomaly detection 

Scoping review of 
AI-based approaches 

Identifies cybersecurity 

anomalies, outages, fraud, and 

infrastructure failures 

Absence of unified 

frameworks across 

multiple anomaly types 

Develop integrated AI-

driven anomaly detection 

architectures 

Baker et al. 

(2022) 

Real-time detection 
of anomalies in 

PEDG 

LSTM + Model 
Predictive Control 

(MPC) 

Achieves real-time anomaly 
classification and corrective 

actions in PEDG 

High dependency on 
time-series quality; less 

tested on large datasets 

Extend integrated 

LSTM-MPC methods for 

scalable, real-time smart 
grid environments 

VI. CONCLUSION AND FUTURE WORK 

The growing number of smart grids, spurred by distributed 
generation and the incorporation of renewable energy sources, 
has greatly increased the complexity of energy distribution 
systems. This complexity has made anomaly detection a 
critical component in ensuring reliability, security, and 
operational efficiency. Through an extensive review of 
existing literature, it is evident that AI-driven techniques and 
hybrid approaches have emerged as powerful tools for 
enhancing anomaly detection. Studies demonstrate that 
methods such as cross-modal collaborative learning, 
hierarchical semantic modelling, physics-based hybrid 
algorithms, and deep learning architectures have successfully 
addressed challenges related to cybersecurity, fault detection, 
energy theft prevention, and real-time monitoring. More 

flexible and robust detection frameworks are required due to 
the increasing complexity of cyber threats, the heterogeneity 
of grid infrastructures, and the variety of datasets. 

Future research should concentrate on creating AI-based 
anomaly detection models that can scale, be explained, and 
adapt to different grid contexts. These models should be able 
to work well in these types of settings.  Evolving smart grid 
ecosystems must incorporate privacy-preserving techniques, 
standardised benchmarking datasets, and real-time analytics 
to guarantee robustness, improve detection accuracy, and 
increase overall security and dependability. 
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