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Abstract—The rapid advancement of smart grids has revolutionized modern energy distribution by integrating renewable energy
resources, distributed generation, and advanced communication technologies. However, the growing complexity, interconnectivity,
and cyber-physical integration have made smart grids increasingly vulnerable to various anomalies, including equipment failures,
cyber-attacks, load forecasting errors, and sensor malfunctions. This paper presents a comprehensive survey of state-of-the-art
techniques for anomaly detection in smart grids, with a focus on artificial intelligence (Al), hybrid frameworks, and semantic
modeling approaches. A wide spectrum of Al-driven methodologies—such as cross-modal collaborative learning, hierarchical
semantic representations, physics-informed hybrid algorithms, and deep learning architectures—are systematically reviewed to
highlight their roles in improving cybersecurity, fault diagnosis, energy theft prevention, and real-time monitoring. The study also
examines the inherent challenges posed by heterogeneous grid infrastructures, diverse data sources, and evolving threat landscapes.
Furthermore, the survey identifies emerging directions for designing scalable, explainable, and adaptive anomaly detection
frameworks integrated with real-time analytics, privacy-preserving mechanisms, and standardized benchmarking datasets. By
synthesizing current advancements and open challenges, this work provides a structured foundation to guide future innovations in
secure, resilient, and intelligent smart grid ecosystems.
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I. INTRODUCTION

Smart Grid technologies and their integration with
improved communication infrastructure, distributed energy
resources (DER), renewable energy production and systems,
and demand-side management have contributed greatly to
power system management transformations in the
contemporary world [1][2]. In contrast to traditional grids,
Smart Grids facilitate two-way power flows and real-time
information exchange, enabling decentralized generation and
dynamic load management. These new developments
maximize efficiency, economics and consumer involvement
in the energy markets. Moreover, the popularity of electric
vehicles and devices and appliances enabled by the Internet of
Things, become the true bearers of the unprecedented
automation and smarts in the operation of the grid, and that is
to make the latter exceedingly complex [3][4].

The additional complexity though comes with major
vulnerabilities. Smart Grids are increasingly at risk of cyber-
attacks, failure of equipment, data modification and other
uncoordinated grid characteristics [5], a factor that has the
potential to jeopardize stability, reliability and security of
power systems. To maintain a stable operation, it has become
important to create a means through which anomaly detection
can occur, suitable enough to identify and rectify them in real-
time [6].

Artificial intelligence (Al) has emerged recently and is
widely recognized in Smart Grid anomaly detection [7][8] to
address these challenges. The Al-based techniques can easily
extract hidden patterns and abnormal behaviours in a complex
stream of data using large-scale, heterogeneous, and high-
dimensional data captured by sensors, smart meters, and
monitoring devices [9]. Yet, as much as data-based methods

© JGRMS 2025, All Rights Reserved

are effective in the detection of patterns, physics-based models
provide the necessary mechanics required to fully describe the
dynamics of operations present in a cyber-physical system
(CPS). Hence, an Al-hybrid approach that combines physics-
based knowledge with physics-deficient algorithms can
provide a stronger, nonlinear, and scalable framework for
anomaly detection in Smart Grids [10].

Machine learning, deep learning, reinforcement learning,
and hybrid models are the Al methods most often used in this
area. They are used for fault detection, load forecasting,
intrusion detection, energy theft protection, and real-time
monitoring [11]. Additionally, the prospect of implementing
Al-based practices on edge-to-cloud platforms enables near
real-time detection and response, thereby facilitating faster
mitigation of anomalies and enhancing the cyber-resilience of
grid infrastructures.

These advancements notwithstanding, there are still
unaddressed challenges. Some of the most significant
challenges are the absence of unified datasets, the inability to
distinguish between the natural variations and the real
anomalies, the challenge of designing big systems that
connect, and the limited interpretability of the Al models [12].
Moreover, Smart Grids are highly dynamic, distributed
systems that are vulnerable to advanced malicious attacks, and
establishing adaptive, interpretable, and robust detection
frameworks is therefore paramount [13]. To overcome these
issues, need the latest algorithms, standardized testing
environments, explainable Al approaches and field-
deployment strategies. Moreover, interdisciplinary research,
with the help of policy and industry-academia engagement, is
also essential to close the growing divide between academic
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improvement and actual application of anomaly detection
solutions in Smart Grids.

A. Structure of the Paper

The structure of this study is organized as follows: Section
Il highlights the significance of smart grids and predictive
maintenance. Section Il defines the types of anomalies in
smart grids. Section IV discusses Al techniques and
implementation challenges. In Section V, the current research
on anomaly detection is examined. Finally, Section VI ends
with some thoughts and suggestions for future study.

Il. SMART GRIDS AND THEIR IMPORTANCE

Integrating state-of-the-art communication, automation,
and information technology with conventional power grids,
smart grids are the logical next step for electrical power
systems [14]. Smart grids allow utilities and consumers to
communicate with each other in two ways, unlike traditional
grids. Increased dependability, efficient energy distribution,
and real-time monitoring are all made possible by this [15].
Smart grids are gaining significance in addressing the
worldwide demand for sustainable and reliable energy
infrastructure as a means to optimize energy usage,
incorporate renewable resources, and guarantee system
stability.
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Fig. 1. Smart Grid Technology

Figure 1 illustrates the technological ecosystem of smart
grids, highlighting the interconnectedness of generation,
transmission, distribution, and consumption. It also shows the
integration of renewable sources, intelligent substations, and
consumer-side innovations like smart meters and EV
charging, reinforcing the importance of smart grids in
achieving efficiency and sustainability.

A. Smart Grid Components

Smart grids are built upon a wide range of interconnected
components that collectively ensure reliable, secure, and
efficient energy distribution [16]. The features enable real-
time monitoring, Fault Management, and Renewable Energy
integration, as well as consumer active participation in Energy
Management. Some of the most important elements in
building today's smart grid infrastructure are:

e Transformers: Transformers that increase or reduce
voltage levels to transmit and distribute power and get
power to customers safely and economically.

o Circuit Breakers: Protective devices that shut off
electricity in the event of faults, or overloads thus
preventing damage and ensuring safety.
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e Sensors: The grid is embedded with sensors to
continuously monitor the parameters of voltage,
current, temperature and the environment.

e Smart Meters: Consumer premise devices that
measure electricity use at a high resolution (enabling
dynamic pricing, demand response and enhanced
consumption analytics).

e Communication Networks: Support two-way data
exchange between grid parts and control centers,
necessary for real-time monitoring and control.

e Energy Storage Systems and Distributed Energy
Resources (DERs): The integration that can be
presented includes batteries, solar, and wind turbines
to enable the grid to be more flexible and use
renewable energy sources.

These elements allow conventional power grids and new
forms of distributed energy resources to work together
seamlessly; they are the backbone of smart grid architecture
[17]. With the ability to connect intelligent sensing and
storage technologies, as well as communication, the grid
becomes an adaptable, two-way system that is user-centric.
Figure 4 provides the best representation of this
transformation, which has evolved into a decentralized,
participatory, and flexible smart grid.
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Fig. 2. Decentralized Smart Grid Future

Figure 2 illustrates a shift in the smart grid towards
decentralized, consumer-controlled power systems, replacing
more conventional power systems. There is a distinct shift in
the modern energy system paradigm as opposed to the
previous model of a few large power plants and command-
and-control structure, and the future grid is that of a utility grid
with distributed energy resources, local power generation and
consumer involvement, also known as a proactive
participation by the consumer in their utility grid.

B. Common Failure Modes and Maintenance Challenges

The infrastructure that comprises the smart grid is highly
susceptible to operational malfunctions and maintenance-
specific concerns, despite being advanced and data-driven.
These failures may arise from equipment aging,
environmental stress, cyber intrusions, or system complexity
[18]. Addressing these challenges is crucial for ensuring
reliable electricity delivery, maintaining grid reliability, and
facilitating the sustainable integration of renewable energy
sources. The key failure modes and challenges are:

e Transformers: Insulation degradation, overheat and
mechanical wear down can cause the failure.
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e Circuit Breakers: Contact wear, coil failures, and
mechanical failure may be the cause of operational
problems.

e Sensors and Smart Meters: Calibration drift,
communication fault, and sensor dust contamination
decrease data reliability.

e Communication Systems: Grid control can be
compromised by Network latency, hack attacks, and
hardware failures.

Maintenance issues are compounded by distributed assets,
restricted access, voluminous heterogeneous data, and the
requirement to ensure that downtime is absolutely minimal
without affecting safety and reliability. Ensuring reliability
and efficiency of smart grid components helps ward off
outages and minimize costs, and consumer safety also
enhances consistency, enhancing renewable integration and
asset life. These issues highlight the importance of
sophisticated strategies, such as predictive maintenance, to
ensure the grid remains sustainable in its performance.

C. Predictive Maintenance in Smart Grids

Predictive maintenance in smart grids emphasizes
anticipating equipment failures before they occur by
analyzing condition-monitoring data, usage patterns, and
performance indicators [19]. It is also an aggressive program,
which not only reduces unplanned outages but also maximizes
the use of resources and vital grid assets. Predictive strategies
are not a new concept within the energy sector, and they are
making utilities face reliability issues in the steady system
developed with the help of more traditional methods.

Conventional maintenance strategies have always been at
the center of the grid operations, but it is limited in comparison
to the predictive strategies. On the one hand, reactive
strategies do not implement measures until an issue arises,
resulting in disruptions of services and associated downtime.
Preventive strategies, on the other hand, compel regular
checkups irrespective of the health of the equipment, which
results in the waste of resources. To better clarify the
distinction of predictive maintenance, one can discuss with the
help of these two common practices that have defined
maintenance in smart grids, as presented below:

o Reactive Maintenance: This maintenance method is
to do repair or replacement of equipment after a failure
has occurred. It is easy to install, but it can cause
unplanned downtime, costly repairs, and pose safety
issues.

e Preventive Maintenance: The plan involves the set
maintenance at fixed intervals irrespective of the
usefulness of the equipment. The purpose of
preventive maintenance is to mitigate failures by
actively maintaining the assets but it can cause an
overload by unnecessary maintenance actions, labor
costs, and inefficiencies in resources.

Predictive maintenance is smarter than reactive and
preventive maintenance, as it focuses on predicting failures
before they occur. That makes utilities shift toward expensive
and unplanned interventions to timely and effective measures.
The most important predictive maintenance benefits are as
follows:

e Early Fault Detection: Catching problems at the early
point of development to avoid the disastrous outcomes.

© JGRMS 2025, All Rights Reserved

e Optimized Maintenance Scheduling: Conducting
maintenance, however, only when the need arises
thereby minimizing downtime and the associated
operating costs.

e Extended Asset Lifespan: Keeping equipment in an
optimal state of operation extends its lifetime.

e Improved Reliability and Safety: Reduction of the
sudden outages reinforces the grid stability and
safeguards the people and infrastructure.

e Data-driven decision-making: Using sensor data and
the application of Al models to aid in proactive
maintenance strategies.

¢ In general, predictive maintenance is a very important
improvement non-traditional methods and the process
of maintenance is harmonized with the needs of smart
grids.

I1l. ANOMALY DETECTION IN SMART GRIDS AND ITS TYPES

Anomaly Detection in Smart Grids refers to the
identification of unusual patterns or behavior in the grid data
suggesting fault, cyber-attacks or failure of equipment. It
relies on high-performance analytics and machine-learning
computation to perceive real-time input from sensors, smart
meters, and control frameworks. Effective anomaly detection
aids in improving the grid power reliability, efficient energy
distribution, for the improvements on fault diagnosis in the
grid power system inspection and on the efforts of grid power
system security.

A. Types of Anomalies in Smart Grids

Smart grids comprise digital communications, sensing,
and control technologies that power and enhance the
management of electricity. They, however, are complex and
interconnected and open themselves to several anomalies.
These anomalies when not detected can compromise
performance--or disturb services or even cause major failures.
The following is what may be described as constituent
categories of anomalies that are likely to be found in smart
grids:

1) Equipment Failures

Equipment failures are one of the most common and
serious problems in smart grids [20]. They may occur due to
the aging of equipment, manufacturing flaws, failure to
service it, or due to some other kind of damage during severe
weather. Examples include transformers failing due to
overheating or blown insulation, circuit breakers not properly
isolating faults, and power line faults or outages caused by
physical damage or wear. There is a risk of causing blackouts,
instability in voltage, and poor power quality, which can
impact both customers and utility companies. Condition
monitoring and Al-based predictive maintenance can enhance
the ability to detect problems early, preventing downtime and
significantly reducing maintenance costs.

2) Cyber-Attacks and Intrusions

Cyber-attacks and intrusions pose substantial threats to
smart grids, as they target the digital and communication
systems of these grids. Hackers can gain unauthorized access
to control systems, disrupt operations, steal sensitive data, or
manipulate grid functions [21]. Common attacks include
malware infections, DoS attacks, and phishing schemes.
These may trigger power outages, lead to damage to
equipment, or trigger the liability and security of the grid.
Preventing cyber-attacks on smart grids is crucial to deploying
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effective cybersecurity practices, such as encryption and real-
time monitoring and response, to intercept an intrusion in time
before it develops into significant damage.

Cyber-Attacks and Intrusions
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Fig. 3. Cyber Attacks and Intrusions

As shown in Figure 3, smart grids/control centers are
subject to cyber-attacks like malware, DoS attacks, and
phishing, causing such problems as power failure, data loss,
and destruction or damage of equipment. It also indicates main
defense techniques, such as encryption, monitoring and
incident response.

3) Load Forecasting Errors

Forecasting Errors: The error between the actual electrical
load consumed and the forecasted load values generated by a
forecasting model is called an error in forecasting. These
errors arise because load demand is influenced by numerous
dynamic factors such as weather conditions, consumer
behaviour, economic activity, and system disruptions, which
are often difficult to predict precisely [22]. Since reliability
issues, poor resource use, and hefty fines can result from
inaccurate load forecasts, accurate load forecasting is crucial
for power system operation and planning. The performance
of the forecasting model can be assessed and enhanced using
common metrics, such as RMSE and MAPE, which measure
load forecasting errors. An assortment of statistical models,
ML techniques, DL algorithms, and other load forecasting
tools has been standardised in an effort to cut down on these
kinds of mistakes.

Load Forecasting Techniques
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Fig. 4. Load Forecasting Techniques

Figure 4 illustrates a hierarchy of load forecasting methods
based on prediction horizon, with short-term, medium-term,
and long-term approaches depicted. Smart grid planners and
managers are primarily interested in medium-term
forecasting.

4) Sensor Malfunctions and Data Inconsistencies

It refers to errors or irregularities in the data collected from
sensors due to hardware faults, communication issues, or
environmental interference. Sensor malfunctions can cause
incorrect, missing, or noisy measurements.[23] , while data
inconsistencies arise when the recorded data does not align
logically over time or between related sensors. These issues
can severely impact the accuracy and reliability of systems
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that depend on sensor data, such as monitoring, control, and
forecasting applications. Validating, filtering, and correcting
techniques are essential for identifying and correcting sensor
malfunctions and data inconsistencies, ensuring data integrity
and maintaining system performance.

IV. ANOMALY DETECTION TECHNIQUES AND SUPPORTING
TooLs IN SMART GRIDS

The dynamic nature of modern smart grids makes them
highly susceptible to a wide range of anomalies, including
cyber intrusions, equipment malfunctions, and irregular
consumption patterns [24]. Traditional monitoring systems
often fail to capture these irregularities in real time due to the
scale and complexity of smart grid infrastructures [25]. Thus,
anomaly detection has become a vital function for providing
reliability, efficiency, and resilience. Al, machine learning,
and statistical analysis enable the detection of anomalies
proactively, preventing potential large-scale impacts on other
activities that may affect grid stability, data protection, or
service disruption.

The tools and platforms supporting these techniques can
also be considered vital. The errors detected by anomaly
detection models are ideally tested in practical environments,
simulated environments, big data frameworks, and cloud
platforms. These tools both enable large-scale
experimentation, as well as provide support for integrating
heterogeneous data sources, including smart meters, sensors
and communication networks. Combined, technology and
tools are the synergy of smart grid intelligent anomaly
detection systems.

A. Anomaly Detection Techniques in Smart Grids

Anomaly detection in smart grids plays a vital role in
ensuring reliability, safeguarding infrastructure, and
preventing disruptions caused by faults or malicious activities
[26]. By identifying irregularities at an early stage, operators
can take proactive measures to maintain stability and security
[27]. The most recent developments employ statistical and Al-
based models, as well as hybrid architectures, to enable
increased scalability and accuracy across a wider range of
operating conditions. The detection methods of anomaly are
presented below:

e Machine Learning (ML) Techniques: Anomaly
classification and pattern recognition using
supervised and unsupervised learning techniques.

e Deep Learning Models: Neural networks such as
CNNs and RNNs for capturing spatial-temporal
patterns in grid data.

e Federated Learning: Distributed model training that
protects user privacy without transferring data files
across devices.

e Graph-Based Models: Utilize graph structure
learning to detect complex interactions and anomalies
in multi-source energy data.

e  Statistical Analysis: Traditional methods like mean,
variance, MAE, MAPE, RMSE to detect deviations
from expected patterns.

e Hybrid Al + Physics-Based Modeling: Combine

artificial intelligence with physical models for
accurate and explainable detection.
e Fuzzy Logic-Based Algorithms: Rule-based

systems (e.g., Artificial Bee Colony + Fuzzy Logic)
for handling uncertainty in smart grid environments.
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e Transformer-Based Models: Used in video or
sequence-based anomaly detection leveraging
attention mechanisms.

e Quantum Al and Neural Networks: Emerging
technique integrating quantum computing for high-
accuracy forecasting and anomaly detection.

B. Tools and Platforms

The deployment of Al-driven anomaly detection in smart
grids requires a strong technological foundation,
encompassing both computational and simulation resources
[28]. The tools can serve not only to efficiently manage
tremendous amounts of grid data but also to design, train and
validate intelligent models reliably and at scale. There are
three groups of tools and platforms, which can be divided to
meet the wide range of needs in utilizing anomaly detection
instruments, as shown in Figure.5, are given below:

Al Frameworks
- TensorFlow
« PyTorch

- Scikit-learn

Tools and Platforms for
{ - > Anomaly Detection in

Big Data Tools Smart Grids Using Al
+ Apache Spark
- Apache Kafka

Smart Grid
Simulators
= GridLAB-D
* MATPOWER
Fig. 5. Tools and Platforms for Anomaly Detection

1) Al Framework

ML model construction, training, and deployment are all
made possible by Al frameworks [29]. They reduce the
complexity of complicated calculations, speed up
experimentation, and enhance scalability, which is essential to
the problem of anomaly detection in smart grids. The most
usual frameworks are presented below:

e TensorFlow: Deep Learning, an open-source
framework created by Google, is extensively utilised
for the construction and training of intricate neural
network models.

e PyTorch: A widely used and adaptable Facebook
deep learning library [30] that is perfect for Al model
development and testing in the wild.

e Scikit-learn: A compact and powerful set of classical
machine learning algorithms, ideal for use in
prototypes and smaller to medium-sized projects.

2) Big Data Tools

Big data tools are essential in the management and
processing of such vast amount of data in a smart grid. They
provide flexibility in terms of being able to run anomaly
detection systems in real time and have fault detection and the
opportunity to scale. The tools used briskly include the
following:

e Apache Spark: ML model training on smart grid data
is a common use case for this general-purpose, rapid
cluster computing system [31].

e Apache Kafka: The ability to detect abnormalities in
live smart grid systems relies on a distributed
streaming platform that can install and monitor data
in real-time.

3) Smart Grid Simulators
Smart grid simulators enable real-time, large-scale, open-
architecture simulations to accelerate smart grid development
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[32]. They minimize inefficiencies in group work, offer safe
experimental tests of systems and processes, and offer a cost-
effective pre-deployment feedback, enhancing reliability and
effectiveness and the implementation strategy.

a) GridLAB-D
The US Department of Energy developed this robust smart
grid simulator so that anybody can model distribution
networks, load patterns, market dynamics, and even the effects
of weather. It can let researchers evaluate anomaly detection
methods and system reaction in a risk-free environment and is
important for creating synthetic data to train Al models.

b) Matpower

Power system optimisation and simulation can be
achieved with this open-source MATLAB tool [33]. Power
flow and optimal power flow problems are solved using it, and
it provides a reliable baseline for verifying anomaly detection
models driven by Al. Its flexibility allows seamless
integration with custom scripts and external machine learning
frameworks, enabling advanced analytics and real-world grid
behaviour validation.

V. LITERATURE REVIEW

The literature review section explores recent
advancements in anomaly detection for smart grids,
emphasizing artificial intelligence, hybrid techniques, and
semantic modeling. It highlights methodologies, applications,
and challenges, showcasing diverse Al-driven approaches
enhancing detection accuracy, robustness, and cybersecurity
in evolving energy distribution systems.

Dong (2025) works deeply executes cross-modal
collaborative  learning and  multi-level  semantics
representation for the data feature of multiple energy sources:
Firstly, utilize the multi-channel attention mechanism to mine
the correlation between energy consumption data in different
models to realize the implementation of the weight attention
of key features. Then, the hierarchical embedding network
was used to map the multi-modal features to the high-
dimensional unified semantic space, the temporal information
and spatial relations were captured through different levels.
[34].

Gaggero, Girdinio and Marchese (2025) Machine learning
techniques are being used more and more in anomaly
detection methods. These techniques are a revolutionary tool
for data analysis. This survey aims to examine Smart Grid
anomaly detection strategies, with a focus on methods that
integrate Al with physics-based modelling. This work
provides a comprehensive review of the existing literature by
analysing the algorithms, use cases, performances, and
validation of published papers, as well as by pointing out
important gaps in the literature and suggesting ways forward
for this area of study [35].

Anaraki et al. (2024) explore the peculiarity of low-
voltage (LV) grids, which are growing increasingly intricate
as a result of the extensive use of decentralized power plants,
electric heat pumps, and solar panels. A variety of data-driven
approaches, including methodologies like process grid data
and statistical analysis as well as Al. In order to uncover any
substantial anomalies in their activities, the investigation
attempts to identify unexpected variations in energy use,
unauthorized photovoltaic systems, and rapid fluctuations in
grid demand. The findings suggest that, taking into account
the goals of grid operators and their ability to differentiate
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between short-term and long-term abnormalities,
approach may be better suited than another [36]

one

Guato Burgos, Morato and Vizcaino Imacafia (2024)
Artificial intelligence is used to detect irregularities in smart
grids. Searched digital archives for articles published between
2011 and 2023. Studies with diverse techniques were
considered, experiments were proposed, and the most applied
methodologies were identified through iterative searches.
Data integrity assaults, anomalous consumption and
measurements, intrusions, electrical data, network
infrastructure, cyber-attack detection, and detecting devices
are the seven SG anomaly-related objects of investigation.
Cybersecurity challenges have been the subject of much
research, particularly in the fight against intrusions, fraud, data
fabrication, and unchecked network model alterations [37].

Banik et al. (2023) Cybersecurity, fault detection,
electricity theft, and many more areas can benefit from
analyzing smart grid data for anomaly detection. Several
factors could have contributed to the unusual and suspicious
actions, such as customers' unusual usage habits, problems
with the grid infrastructure, power outages, cyberattacks from
outside sources, or energy fraud. Academics have recently
focused on smart grid anomaly detection, and it has found
extensive use in a number of important sectors. An enormous

challenge inside the smart grid is the implementation of
reliable anomaly detection for all kinds of unusual behaviors.
Aiming to cover both historical and current research on smart
grid anomaly detection, this study compiles a literature
catalogue [38].

Baker et al. (2022). This article discusses the problematic
nature of PEDG's real-time anomaly detection and
classification. The proposed approach to reaching ADS and
ACS in real-time is based on integrating model predictive
control (MPC) with long short-term memory (LSTM). Both
the MPC and the LSTM detection network can make use of
time-series input data for classification and anomaly
correction. Future PEDG must have the capability to identify
and repair power electronics' internal problems; here is where
the proposed LSTM-MPC solution is useful; this will allow
inverters' internal failures to be distinguished from anomalies.
To enable PEDG to operate resiliently in the face of
cyberattacks, it is necessary to identify and categorize internal
faults such as an open circuit fault [39].

Table | provides a synopsis of current research on smart
grid anomaly detection using artificial intelligence (Al),
comparing various studies and highlighting their methods,
results, limitations, and potential future research areas.

TABLE I. SUMMARIZES THE STUDY ON ANOMALY DETECTION IN SMART GRIDS USING ARTIFICIAL INTELLIGENCE
- Limitations /
Reference Study On Approach Key Findings Challenges Future Research
. Cross-mot_:ial Improved feature extract!on High computational | Optimize  multi-modal
Dong Multi-modal energy | collaborative and anomaly detection . .
: - . ? S complexity and | feature learning for large-
(2025) source data analysis | learning & multi- | accuracy using unified scalability issues scale smart arids
channel attention semantic representation g
Gaggero et Al & physics-based | Survey on  Al- CHJ%T:EES thmgngp%rr?;sciT:(;sl Lack ~ of real-time fDr:;eel\?v%rks in::glr?attlinr?g
al. (2025) mgdelmg in smart mtegrgted anomaly modeling for enhanced d_ep_loyment insights; Al and physics-based
grids detection methods - limited benchmarks
detection models
. . Build  adaptable Al
Anaraki et | Low-voltage  grid | Statistical & Al- Effectlve_ly . . detects Depe_:n_dencc_a on _g”d' models applicable across
. - . unauthorized installations and | specific objectives; low . -
al. (2024) anomaly detection driven techniques A diverse LV grid
sudden load changes generalization .
topologies
Guato An_orpaly detectlog c o Idegtlfles mijoranor_naly types Limited  experimental Incgrrl)orate hyé)drld Al
Burgos et in infrastructure an _omprehensive (cyber-attacks, intrusions, validations: lacks cross- | Models ~ addressing
cybersecurity using | literature survey energy fraud) and detection I cybersecurity and energy
al. (2024) - domain insights S
Al devices anomalies jointly
- . . . Identifies cybersecurity | Absence of unified | Develop integrated Al-
Banik et al. | Broad smart grid | Scoping review of - : -
(2023) anomaly detection Al-based approaches anomalies, outages, fraud, and | frameworks across | driven anomaly detection
infrastructure failures multiple anomaly types | architectures
Real-time detection | LSTM + Model | Achieves real-time anomaly | High dependency on Extend integrated
Baker et al. . . L A : . . e LSTM-MPC methods for
(2022) of anomalies in | Predictive Control cIa_ssnflc_atlon and corrective | time-series quality; less scalable. real-time smart
PEDG (MPC) actions in PEDG tested on large datasets - "
grid environments

V1. CONCLUSION AND FUTURE WORK

The growing number of smart grids, spurred by distributed
generation and the incorporation of renewable energy sources,
has greatly increased the complexity of energy distribution
systems. This complexity has made anomaly detection a
critical component in ensuring reliability, security, and
operational efficiency. Through an extensive review of
existing literature, it is evident that Al-driven techniques and
hybrid approaches have emerged as powerful tools for
enhancing anomaly detection. Studies demonstrate that
methods such as cross-modal collaborative learning,
hierarchical semantic modelling, physics-based hybrid
algorithms, and deep learning architectures have successfully
addressed challenges related to cybersecurity, fault detection,
energy theft prevention, and real-time monitoring. More
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flexible and robust detection frameworks are required due to
the increasing complexity of cyber threats, the heterogeneity
of grid infrastructures, and the variety of datasets.

Future research should concentrate on creating Al-based
anomaly detection models that can scale, be explained, and
adapt to different grid contexts. These models should be able
to work well in these types of settings. Evolving smart grid
ecosystems must incorporate privacy-preserving techniques,
standardised benchmarking datasets, and real-time analytics
to guarantee robustness, improve detection accuracy, and
increase overall security and dependability.
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