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Abstract—Chronic liver disease, or CLD, is becoming a bigger problem in the world's health care system because it is hard to notice
when it starts and is fatal in its later stages. It is difficult to detect the disease at an early stage since conventional diagnostic procedures
including imaging, biopsies, and liver function tests are intrusive, expensive, or not widely available. This highlights the need for
accurate, non-invasive, and data-driven approaches to support timely intervention and reduce clinical risks. Machine learning (ML)
has shown promise in processing large, heterogeneous datasets to uncover hidden patterns and enhance predictive performance.
Using the Liver Disease Patient Dataset from the UCI Repository, comprising 30,691 records with 11 attributes, this study applied
extensive preprocessing, including missing value imputation, outlier removal with the IQR method, Min—-Max normalization, and
SMOTE for class balancing. Feature selection was employed to improve interpretability and efficiency. A model called Gradient
Boosting (GB) was created and tested against many other methods, including SVM, Random Forest, MLP, and XGBoost. Surpassing
baseline models, GB attained the best performance with a 98.60% ROC-AUC, 98.50% recall, precision, and F1-score. Based on these
findings, ensemble approaches are reliable for predicting early CLD. Improving practicality will be the goal of future studies that
investigate clinical validation and the integration of multimodal data.

Keywords—Chronic Liver Disease (CLD), Machine Learning, Gradient Boosting, Healthcare Monitoring, Early Diagnosis, Clinical

Decision Support.

I. INTRODUCTION

The human body's largest organ is the liver. All metabolic
processes, including the transformation of dietary materials
into usable compounds, their storage, and their eventual
delivery to cells as required, are carried out by it [1].
Generation of bile, proteins, glucose storage and release,
processing of haemoglobin, detoxification of blood,
generation of immunological factors, and clearance of
bilirubin are all essential tasks. Because of this, the liver is
crucial to good health in general. But many people fail to
prioritize their liver health. Liver problems, from moderate to
severe, affect a large section of the world's population as a
result of unhealthy lifestyle choices [2].

Chronic liver disease (CLD) includes hepatitis, cirrhosis,
and non-alcoholic fatty liver disease (NAFLD), and it is a
major public health concern since it contributes to the yearly
deaths of millions of people [3][4]. Late diagnosis,
complicated disease progression, and significant morbidity
and mortality are clinical problems of CLD. To intervene
quickly, it is essential to understand how liver disease
develops. The American Liver Foundation states that
inflammation is the usual starting point for liver disease,
which can lead to the liver swelling up to its normal size.
Fibrosis, scarring caused by inflammation, can develop as a
result of this. Cirrhosis is a severe scarring stage that can
develop from fibrosis if left untreated. It can lead to liver
cancer or failure [5][6]. The liver's capacity to repair itself and
carry out its vital tasks can be severely compromised by
advanced fibrosis or cirrhosis.

Diagnostic procedures that have been around for a while
include ultrasound, MRI, LFTs, and liver biopsies. Although
imaging allows for a visual evaluation of liver morphology
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and the detection of anomalies, LFTs evaluate liver function
by testing enzyme levels and other chemicals in the blood.
Liver biopsies are invasive, expensive, and generally
unavailable due to resource constraints; they include
removing and analysing liver tissue under a microscope [7].
Early detection and ongoing monitoring of CLD are becoming
increasingly important due to the limits of conventional
diagnostics. Modern healthcare generates vast amounts of
heterogeneous data, including lab results, imaging studies,
genetic markers, and lifestyle information, which are
challenging for clinicians to integrate manually[8]. Diagnostic
precision, workflow, and individualized treatment plans can
all be enhanced by data-driven methods, especially ML.

Machine learning is an Al subfield that focuses on
improving the comprehension and analysis of massive
datasets via the application of mathematical and statistical
methods ~ [9][10][11]. Predicting  diseases, patient
classification, and creating individualized treatment programs
are all areas where it has found use in healthcare. When it
comes to crunching numbers, finding trends, and predicting
outcomes with pinpoint accuracy, ML models are unrivalled
[12]. ML has the potential to be useful in medical diagnostics
and risk assessment of chronic diseases, and successful cases
have been reported in diabetes, heart disease, and cancer.
Machine learning can be used with multimodal clinical
information, including patient records, imaging, lab results,
and genomic data, to provide a comprehensive view of liver
disease [13][14]. Machine learning models trained on such
datasets can aid in early diagnosis, predict disease
progression, track patient response to treatment, and assess the
risk of adverse consequences [15][16]. The approach enables
healthcare professionals to identify individuals at risk,
diagnose more effectively, prescribe interventions promptly,
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and ultimately improve patient outcomes. The use of ML in
CLD management can be a great opportunity to address the
classical constraints of diagnosis and help to provide
personalized care.

A. Motivation and Contribution

The fact that chronic liver disease (CLD) frequently goes
undiagnosed until it has progressed to a severe stage adds
insult to injury: CLD is a growing world health concern. This,
in turn, spurred this research. Timely intervention and
subsequent patient outcomes, as well as a reduction in
healthcare burdens, depend on early diagnosis. Liver biopsy
and imaging are examples of traditional diagnostic
procedures; nevertheless, they can be intrusive, costly, and
time-consuming, which limits their accessibility. The growing
availability of medical datasets, combined with advancements
in machine learning, offers an opportunity to develop
automated, accurate, and non-invasive predictive models.
Early identification, continuous monitoring, and informed
decision-making can all be facilitated by these technologies,
which in turn can enhance patient care and prognosis. Recent
studies have shown promising results in the fight against liver
disease:

e The UCI Repository's Liver Disease Patient Dataset
was used for this purpose; it has 30,691 records with
11 clinical variables, making it a diversified and large-
scale dataset, ideal for predictive modelling.

o Data quality and model resilience were enhanced
through extensive pre-processing, which included IQR

outlier identification, Min-Max normalization,
SMOTE for class balance, and missing value
imputation.

e Feature selection to preserve the most important
clinical variables enhanced computational
performance, decreased dimensionality, and increased
model interpretability.

¢ Improved prediction performance by using a Gradient
Boosting (GB) model for accurate liver disease
classification, which leverages its ensemble learning
capabilities.

o A comprehensive evaluation of the reliability of the
predictions was ensured by using the following
metrics: F1-score, accuracy, precision, recall, and area
under the curve (AUC-ROC).

e Developed a non-invasive data-driven prediction
system to assist with chronic liver disease management
care decision-making, monitoring, and early detection.

B. Justification and Novelty

The proposed study is based on the idea that, because of
the limits of current diagnostic procedures, there is an urgent
need to create efficient, non-invasive ways to diagnose and
monitor chronic liver disease in its early stages. This study is
novel because it combines extensive pre-processing methods,
feature selection, and the Gradient Boosting model to process
immense, skewed clinical data effectively. One advantage of
this methodology compared to the traditional one is that it can
maximize predictive performance and can also be interpreted
and scaled to a typical clinical scenario. The resulting system
provides a stable, evidence-based framework to enhance early
diagnosis, ongoing monitoring, and support clinical decision-
making.
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C. Organization of the Paper

This paper is structured in the following way: Section Il is
a review of related studies. Section Il outlines the
recommended methodology, including data preprocessing,
model implementation, and evaluation measures. In Section
1V, the results of the experimental results and comparison with
the existing methods are provided. Lastly, Section V provides
a summary of the study, highlights the major findings, and
outlines potential future research directions.

Il. LITERATURE REVIEW

The current review shows recent progress in ML and DL
in diagnosing and monitoring chronic liver disease, with a
focus on predictive models, biomarkers, and ensemble-based
methods on both clinical and imaging data.

Syed et al. (2025) trained various models—including
CNN, SVM, LR, and KNN—using ILPD resources on Kaggle
to improve liver disease diagnosis. Top performance was
achieved by the CNN model, which achieved an accuracy rate
of 96.21, precision rate of 74.76, recall rate of 92.77, and F1-
score rate of 82.80. The paper identifies the promise of Deep
Learning algorithms, specifically CNN, to be more predictive
than Machine Learning algorithms [17].

Maurya et al. (2025) conducted research to improve liver
disease diagnosis. They created a predictor model based on
multiple clinical data sets, achieving an astonishing accuracy
of 83% on the test set through hyperparameter optimisation of
logistic regression. This method outperforms the conventional
diagnostic approach for identifying liver-related conditions in
a non-invasive manner, and, more importantly, a cost-
effective and reliable solution has been achieved. Moreover,
it is a good way to detect people at higher risk of progressive
liver diseases, such as fibrosis or organ damage [18]

Hossain Shaon et al. (2024) developed StackLD using the
stacking-ensemble machine learning approach. Seven highly
effective models were quickly created after they harmonized
with the ILPD dataset. The stacking method was found to be
more accurate, sensitive, specific, and had a larger area under
the curve (0.8622, 0.8933, 0.8369, and 0.9275, respectively).
This is a useful method of separation of positive and negative
classes in independent test procedures [19].

Kumar et al. (2024) created a StackLD architecture based
on a machine learning stacking-ensemble method. They have
utilized the dataset of Indian Liver Patient Dataset (ILPD) to
correct the mismatches and have made seven powerful
models. Results of 0.8622 for accuracy, 0.8933 for sensitivity,
0.8369 for specificity, and 0.9275 for the area under the curve
all indicate the stacking method's superior performance. This
method successfully separates positive and negative classes in
independent test approaches, based on a framework of more
than 1,600 patients, to forecast subtyping of liver diseases and
prognosis using CNNs, RNNs, and LSTMs. The method
enabled analysis of structural abnormalities, analysis of
multimodal data sources and analysis of sequential clinical
data. The findings were correct, and CNN with RNN
performed the best at 97.8% and CNN with LSTM at 94.5%.
The model's viability and accuracy in hepatology were
enabled by the integration of multiple data sources [20]

P, S S and D (2023) exploring the potential for creating
supervised ML systems to forecast liver failure. Instead, they
utilised data visualisation and univariate and bivariate analysis
as part of the pre-processing steps to gain insight into the
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dataset's properties. They compared their performance metrics
of recall, F1 score, and accuracy after developing a multi-
classification model using machine learning methods. By
accurately predicting cases of liver failure, the results
demonstrated the potential medical applications of machine
learning algorithms. The target algorithm achieved an
accuracy of 94.48, prompting researchers to develop more
complex models [21].

Minnoor and Baths (2022) studied the performance of
several ML models in detecting and grading liver disease. One
example of a model was the LR model. Other models included
the Extra Tree, LightGBM, and KNN. Findings also indicate

that current approaches are intrusive and time-consuming,
with the shortage of qualified experts exacerbating the
situation. The 11 features utilised to train the models yielded
a peak accuracy of 0.89 and an F1 score of 0.88; hence, the
Extra Trees classifier showed superior accuracy and speed in
predicting liver disease from blood enzyme levels. [22].

The Table | summarizes key studies on machine learning

for chronic liver disease, highlighting methodologies,
performance, limitations, and future work to guide
improvements in diagnosis, monitoring, and clinical
applicability.

TABLE I. REVIEW OF MACHINE LEARNING APPROACHES FOR CHRONIC LIVER DISEASE DIAGNOSIS AND MONITORING
Reference Methodology Dataset Performance Limitations Future Work
Syed et al. | CNN, SVM, LR, | ILPD, Kaggle CNN:  Accuracy 96.21%, | Small, imbalanced | Use larger, diverse datasets and
(2025) KNN Precision  74.76%, Recall | dataset; no external | integrate  multimodal data
92.77%, F1-score 82.80 validation (imaging + clinical)

Maurya et al. | Logistic Regression | Clinical records | Accuracy 83% Moderate  accuracy; | Apply deep learning or
(2025) (hyperparameter lacks multimodal data | ensemble methods and include

tuned) imaging/sequential patient data.
Hossain Stacking ensemble | ILPD (SMOTE) | Accuracy 86.22%, Sensitivity | Synthetic  balancing | Validate models on real-world
Shaon et al. | (XGB, LGBM, DT, 89.33%, Specificity 83.69%, | may not reflect real- | clinical datasets and larger
(2024) KNN, RF) AUC 92.75% world data cohorts
Kumar et al. | CNN + RNN + | Clinical + | CNN+RNN: 97.8%, | Limited demographic | Test across diverse populations
(2024) LSTM hybrid imaging + | CNN+LSTM: 94.5% diversity; single- | and  develop  multimodal

sequential data centre data prognosis models
P, S S and D | Multi-class ML | Pre-processed Accuracy 94.48%, F1-score | Specific  algorithms | Implement models in clinical
(2023) classification clinical dataset and recall comparable not clearly detailed; no | workflows for practical
deployment validation

Minnoor and | Logistic Regression, | Blood enzyme | Extra Trees: Accuracy 89%, | Small, non-diverse | Combine  biomarkers  with
Baths (2022) KNN, Extra Trees, | dataset (11 | Fl-score 0.88 dataset; no imaging | multimodal data to improve

LightGBM, MLP attributes) integration predictive accuracy

A. Research Gap

Existing studies on the diagnosis and monitoring of
chronic liver disease demonstrate promising results using
machine learning and deep learning techniques; however,
critical gaps remain. Most approaches rely on limited, single-
source  datasets, restricting generalizability  across
populations. Challenges such as multimodal data integration,
longitudinal patient monitoring, and real-world deployment
are underexplored. Current research often uses either
biochemical, imaging, or sequential clinical data, neglecting
comprehensive integration. Furthermore, external validation,
interpretability, and the implementation of ensemble or hybrid
models in clinical workflows are insufficiently addressed.
Building reliable, multi-modal, and therapeutically
deployable prediction systems should be the goal of future
research.

I1l. RESEARCH METHODOLOGY

The suggested approach for using ML for Chronic Liver
Disease Diagnosis and Monitoring includes a well-organised
pipeline to guarantee precise predictions, as shown in Figure
1. Retrieve the UCI repository's dataset of individuals with
liver disease first. Among the 30,691 patient records with 11
variables included in the sample, 21,917 patients were found
to have liver illness. Initial exploratory analysis used bar plots
and correlation heatmaps to examine feature relationships and
class imbalance. The preprocessing steps included filling in
missing values, detecting outliers using the IQR approach, and
normalizing the features to a range of 0 to 1 using the min-
max methodology. Applying SMOTE helped level the playing
field between the diseased and non-diseased groups, leading
to a more representative sample. Feature selection is carried
out to identify the most effective predictors. Next, the dataset
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was divided into two parts: the training set and the testing set.
This would guarantee accurate results when evaluating the
models and making predictions. The categorization data is
then used to train a Gradient Boosting (GB) model. Metrics
used to quantify the model's performance include AUC-ROC,
F1-score, recall, accuracy, precision, and precision. The end
product of this pipeline is a dependable system for predicting
liver illness. This system can facilitate early diagnosis and
continuous monitoring, ultimately enhancing patient
outcomes and informing clinical decision-making.

Missing value imputation
Detect and Remove
Outliers

Liver Disease
Patient Dataset

Exploratory data analysis
and Pre-process the Data

Data Balancing |
using SMOTE

Data
Normalization

Feature Selection

Data Splitting

Implement
GB Model

Train data I Test data ]

Performance
Evaluation using
various metrics

[ Accuracy I Precision Recall

F1-score

AUC-ROC

Liver Disease
Prediction

Fig. 1. Proposed Flowchart for Chronic Liver Disease Prediction
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A. Data Collection

Data from patients with liver disease worldwide are
housed in the Liver Disease Patient Dataset, which can be
accessed openly at the UCI ML repository. Out of a total of
30,691 individuals recorded in this dataset, 21,917 were found
to have liver disease, while the remaining 8,774 were healthy.
Every record in the collection has eleven different properties.
A predicate is the eleventh attribute, while a target attribute is
the twelfth. There are two categories: attributes, five decimal
attributes, and four integer attributes.

B. Exploratory Data Analysis

EDA was conducted to identify underlying patterns and
relationships among variables in the liver disease dataset. It
highlights the influence, along with clinical features, on the
occurrence of liver disease, while also assessing the
distributions of demographic and behavioural factors. The
EDA for the dataset is presented in Figure 2 below.

Fig. 2. Correlation Heatmap of Liver Disease Patient Features

Figure 2 shows the correlation matrix of clinical
characteristics for the Liver Disease Patient Dataset. The
direction and strength of feature-to-feature connections are
graphically shown in the heatmap, where values range from -
1 to 1. Positive correlations are shown in shades of green,
while negative correlations appear in blue. Diagonal elements
display perfect correlation (1.0) of features with themselves.
Among the observed correlations, the strongest positive
correlations are between TP (Total Protein) and A/G
(Albumin and Globulin Ratio) (0.77), TP and Al (Albumin)
(0.77), and Al and A/G (0.62). The strongest negative
correlation is observed between LD (Liver Disease) and A/G
(-0.25). This visualization aids in identifying potential
interactions, multicollinearity, and informs feature selection
for predictive model development.
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The distribution of individual features in the Liver Disease
Patient Dataset was shown in Figure 3, which is a set of
histograms. Albumin (AL), albumin and globulin ratio
(AGR), total proteins (TP), gender (GN), total bilirubin (TB),
direct bilirubin (DB), alkaline phosphatase (AP), alanine
aminotransferase (ALA), aspartate aminotransferase (ASA),
total proteins (TP), and the liver disease class label (LD) are
all displayed in separate subplots. The majority of
characteristics, including TB, DB, AP, ALA, and ASA, have
a high concentration of lower values and are right-skewed,
suggesting that they do not follow a normal distribution. In
contrast, Age, TP, AL, and AGR appear to be more normally
distributed. The class label LD shows a clear imbalance, with
amajority of instances belonging to one class, highlighting the
need for techniques to address class imbalance during model
training.

C. Data Pre-Processing

Preparing the data to construct a robust and dependable
system is crucial before implementing ML approaches into the
model. Different data preparation challenges were addressed
in this study using various methods. The dataset was pre-
processed using missing value imputation and Detection and
Removal of Outliers. Preprocessing, the data transformation
and normalization, is carried out. The following steps of pre-
processing are as follows:

e Missing value imputation: Improving data
representation, stability, and reducing bias are all
goals of missing value imputation. It also computes
the proportion of empty attributes by using isnull() to
locate missing values.

e Detect and Remove Outliers: The method entails
searching the dataset for data points that stand out
significantly from the others. Prediction models are
vulnerable to errors if they are not handled
appropriately. To highlight any dataset outliers, used
the IQR method and placed the feature cutoff at three
points.

D. Data Normalization

The records were normalized using the min-max
technique, which limits values to a range of 0 to 1. An increase
in classifier efficiency and a decrease in the effect of outliers
were the intended outcomes of this [23]. Or this normalization,
consulted the following mathematical Equation (1):

Xr — X— Xmin (l)
Xmax—Xmin

Where X is the initial feature value, X' is its normalized
value, X,,in 15 its lowest value, and X,,,4, IS its highest.

E. Data Balancing using SMOTE

Machine learning model performance can be adversely
affected by class imbalances in datasets; data balancing
approaches are essential for rectifying this issue, especially in
classification ~ tasks  where  certain  classes  are
underrepresented. The SMOTE method is effective because it
enhances model stability and accuracy by generating new
samples for the minority group, rather than simply replicating
existing ones [24]. The distribution of patients in the Liver
disease and no liver disease groups before and after SMOTE
administration is shown in Figure 4. The dataset before
SMOTE included 21,917 people with liver disease and 8,774
without liver disease. Following SMOTE, the distribution
became almost balanced, with 13,050 and 13,161 patients in
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the two groups, which demonstrates how SMOTE is effective
in reducing bias in the class and providing a more accurate
model for training.

23000

21,917 mmm Liver disease

= No liver disease
21000

19000
17000
15000

13000

Number of Patients

11000

2000

7000

5000

Before SMOTE

After SMOTE

Fig. 4. Patient Distribution Before and After SMOTE

F. Feature Selection

The goal of variable or attribute selection, often called
feature selection, is to build effective predictive models by
picking a subset of important features. It is based on the
assumption that datasets frequently have hidden or redundant
features - redundant features do not add new information not
already represented. Still, irrelevant features add little or no
predictive information. In addition to enhancing model
performance through complexity and overfitting reduction,
feature selection also provides sufficient information about
which features hold the most power, as well as their
relationships with each other. Figure 5 shows a horizontal bar
chart that summarizes the feature important scores of a
Gradient Boosting model. The features are listed on the y-axis
and the x-axis represents the importance score. AG, ALA, DB,
and AP. The chart shows that the strongest feature is DB,
followed by AP, and then ALA. The other features, such as
AG and GN, have a small effect on model predictions. This
visualization once again justifies the role of feature selection
as atool to illuminate important variables and make the model
more intelligible and predictive.

AGR
Al

™

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.1r75
Fig. 5. Feature importance Plot

G. Data Splitting

Data was divided into training and testing samples to
evaluate the model's performance and generalizability. To be
more precise, the model was trained using 80% of the data in
order to discover patterns and optimize its parameters, and its
predicted accuracy on new data was evaluated objectively
using the remaining 20%.

H. Proposed Gradient Boosting Model(GB)

The ensemble technique known as "Gradient Boosting"
leverages the interdependence of base estimators. Using the
errors of the previous iteration's base estimator as a learning
tool, this algorithm trains a new one [25]. To merge weak
learners at each stage to "boost" performance and produce a
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strong learner, this method is known as boosting. Three
primary aspects are taken into account by GB to ensure
optimal performance: the loss function, a weak learner, and an
additive model to minimize the loss function in conjunction
with the weak learner [26]. Step one is to write the formula as
it appears in Equation (2).

F(x) = Xm=o fm(x) 2

The optimization approach determines the sequential
incremental functions, also called "boosts," where f,(x) isan
initial estimate and {f,,(x)}¥. One of the most popular
optimisation approaches for the loss function is steepest
descent. As mentioned in Equation (3), it specifies the
increment of {f,,,(x)} 1.

9n00) = ([ F () = B, - 10} G)

Where F,,_; = Y™ fi(x) , Then, the line search
multiplier pm is found in the same way as in Equations (4) and

(5).
fm(x) = _pmgm(x) “
Pm =arg mpin P[F (x) = Fp — 1(x) = pmgm(x) (5)

Here, the negative gradient —gm(x) defines the steepest
descent direction, ensuring that the algorithm minimizes the
loss function, improves performance, and reduces the risk of
overfitting.

. Evaluation Metrics

The accuracy, precision, recall, and F1-score metrics were
used to measure performance. These metrics were derived
from the total number of correct and incorrect classifications.
This information is inferred from the confusion matrix, which
includes TP, TN, FP, and FN, which stand for true positives
and true negatives, respectively. Further definitions of
Accuracy, Precision, F1-Score, and Recall can be found
below:

Accuracy: The trained model's accuracy as a percentage
of the total occurrences in the dataset (input samples) is
calculated using Equation (6)-

TP+TN

Accuracy = ———
Y TP+Fp+TN+FN

(6)

Precision: The ratio of a model's true positives to its
overall number of true positives is a measure of its prediction
accuracy. Accuracy shows. As Equation (7), shows how well
the classifier predicts the positive classes-

TP
TP+FP

Precision =

0

Recall: This statistic represents the proportion of positive
events that were really predicted out of all the cases that were
expected to be positive. It can be expressed mathematically as
Equation (8)-

TP
TP+FN

Recall = ()

F1 score: It aids in maintaining a healthy equilibrium
between recall and precision by combining the two concepts
of the harmonic mean. Its range is [0, 1]. It is mathematically
expressed as Equation (9)-

PrecisionxRecall
F1 —score =2 X ——

(€))

Precision+Recall
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ROC-AUC Curve: The ROC curve is a popular tool for
assessing the efficacy of classification models across a range
of threshold values. The AUC is a probabilistic curve that
measures the model's discriminatory strength. A better
discriminator will have a higher AUC. To create a ROC curve,
one needs to use Equations (10) and (11) to draw a straight
line that connects the True Positive rate (TPR) and the False
Positive rate (FPR). The Y-axis shows the TPR, and the X-
axis shows the FPR.

FPR = 2 (10)
TN+FP

TPR = —~ (1)
TP+FN

A thorough understanding of the model's overall
classification efficacy can be obtained by combining these
evaluation metrics.

IVV. RESULTS AND DISCUSSION

This part describes the research design and the
performance of the proposed Gradient Boosting model. The
model was generated and tested on a high-performance
computing platform with an Intel Core i9-10900 K processor,
3.70 GHz, 64 GB of DDR4 random-access memory, a 500 GB
NVMe SSD, and 2 TB of disk memory, running Windows 11
Pro on a Jupyter notebook. The system provides effective data
processing and computing power, supporting the development
and testing of robust models. As it is observed in Table |1, the
performance of the model can be summarized as follows: The
model reached an accuracy of 98.80, precision of 98.50, recall
of 98.50, F1-score of 98.50, and ROC-AUC of 98.60, which
is relatively high in its ability to classify patient data. Those
findings indicate the model's effectiveness in detecting actual
positive cases and reducing false positives, thereby
demonstrating its power and overall efficacy in forecasting
chronic liver disease.

TABLE II. EXPERIMENT RESULTS OF PROPOSED MODELS FOR
CHRONIC LIVER DISEASE PREDICTION ON LIVER DISEASE PATIENT
DATASET
Performance matrix Gradient Boosting
Accuracy 98.80
Precision 98.50
Recall 98.50
F1-Score 98.50
ROC-AUC 98.60

80

ol 67 3454

LD NO LD
Predicted Class

Fig. 6. Confusion Matrix of the Gradient Boost Model for Liver Disease
Prediction

Figure 6 shows the GB model's confusion matrix for LD
prediction; the model works as expected. The matrix indicates
that of all cases 8676 were rightfully found to have LD (true
positives), 3454 were rightly found to not have LD (true
negatives). This indicates that the accuracy of classifying
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positive and negative cases is high. With only 80 false
negatives (LD cases wrongly named as not having the disease)
and 67 false positives (LD cases wrongly branded as having
the disease), the model proved to be highly accurate. The GB
model appears to be highly accurate and trustworthy in
predicting liver illness, based on the minimal number of false
positives and false negatives.
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Fig. 7. ROC Curve of the Gradient Boost Model for Liver Disease
Prediction

Figure 7 shows a ROC curve depicting a GB model used
for the prediction of liver disease. See how various threshold
values affect the TPR and FPR in this graph. The solid blue
curve of the model remains far higher than the diagonal
dashed line, which stands for a random guess. Differentiating
between individuals with and without liver illness is certainly
a strong suit of the model, as evidenced by an AUC of 0.9860,
which is quite close to 1. A high area under the curve (AUC)
indicates that this predictive model is robust and accurate.

A. Comparative Analysis

In this section, the comparison of various ML models in
chronic liver disease prediction is given, which is summarized
in Table 111. Of all the models compared, SVM achieved an
accuracy of 71.35%, while RF performed better at 87%. The
MLP has shown a significant improvement in its accuracy to
96.43%. XGBoost (XGB) then improved predictive precision
to 92.07%. The GB model outperformed the competition,
demonstrating its superior performance and reliability for
patient data classification with an impressive accuracy rate of
98.80%. Table 111 explicitly shows the incremental accuracy
improvement with models and the merit of ensemble-based
approaches, particularly Gradient Boosting, in achieving
effective and accurate chronic liver disease prediction.

TABLE III. ACCURACY COMPARISON OF DIFFERENT PREDICTIVE

MODELS OF CHRONIC LIVER DISEASE PREDICTION USING THE LIVER
DISEASE PATIENT DATASET

Models Accuracy
SVM[27] 71.35
RF[28] 87
MLP[29] 96.43
XGBoost[30] 92.07
GB 98.80

The primary advantage of the proposed Gradient Boosting
(GB) model is that it is highly predictive and capable of
diagnosing chronic liver disease. The GB model can be used
effectively to learn the complex non-linear patterns and
interactions of the dataset by sequentially incorporating
several weak learners, which is two times superior to
conventional machine learning algorithms. It also
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demonstrates a good level of accuracy and recall, reducing
false positives and false negatives, which is crucial in clinical
decision-making. Additionally, the ability to work with
asymmetrical and heterogeneous data, along with the model's
flexibility, allows it to be applied in the medical field on a
large scale.

V. CONCLUSION AND FUTURE STUDY

Machine learning holds significant promise for improving
CLD diagnosis and surveillance. Using extensive
preprocessing methods, feature elimination, and data
balancing of the UCI Liver Disease Patient Dataset, a GB
model was constructed that achieved high performance, with
98.80% accuracy, 98.50% precision, recall, and F1-score, and
an AUC of 98.60. These results suggest that ensemble-based
models can generate more complex data patterns than
traditional models, such as SVM, RF, and XGBoost. The
suggested solution will overcome the drawbacks of invasive
and expensive diagnostic methods, providing a scalable, non-
invasive, and effective framework to assist in clinical
decision-making, early intervention, and continuous patient
monitoring. However, there are still several challenges. The
majority of existing datasets lack diversity and consist of
single-source clinical data, limiting their ability to generalise
to the population. Moreover, the actual application and
clinical interpretability of such models are not studied.

Future research should consider using multimodal data,
including imaging data, biochemical data, genomic data and
sequential patient data to increase predictive ability. The
implementation of explainable Al will also increase usability
and trust among healthcare experts. Last but not least, clinical
trials and the ability to integrate them into hospital decision-
support systems are the key to transforming predictive models
into practical applications that enhance patient outcomes and
advance precision medicine.
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