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Abstract—Chronic liver disease, or CLD, is becoming a bigger problem in the world's health care system because it is hard to notice 

when it starts and is fatal in its later stages. It is difficult to detect the disease at an early stage since conventional diagnostic procedures 

including imaging, biopsies, and liver function tests are intrusive, expensive, or not widely available. This highlights the need for 

accurate, non-invasive, and data-driven approaches to support timely intervention and reduce clinical risks. Machine learning (ML) 

has shown promise in processing large, heterogeneous datasets to uncover hidden patterns and enhance predictive performance. 

Using the Liver Disease Patient Dataset from the UCI Repository, comprising 30,691 records with 11 attributes, this study applied 

extensive preprocessing, including missing value imputation, outlier removal with the IQR method, Min–Max normalization, and 

SMOTE for class balancing. Feature selection was employed to improve interpretability and efficiency. A model called Gradient 

Boosting (GB) was created and tested against many other methods, including SVM, Random Forest, MLP, and XGBoost. Surpassing 

baseline models, GB attained the best performance with a 98.60% ROC-AUC, 98.50% recall, precision, and F1-score. Based on these 

findings, ensemble approaches are reliable for predicting early CLD. Improving practicality will be the goal of future studies that 

investigate clinical validation and the integration of multimodal data. 

Keywords—Chronic Liver Disease (CLD), Machine Learning, Gradient Boosting, Healthcare Monitoring, Early Diagnosis, Clinical 

Decision Support. 

I. INTRODUCTION 

The human body's largest organ is the liver.  All metabolic 
processes, including the transformation of dietary materials 
into usable compounds, their storage, and their eventual 
delivery to cells as required, are carried out by it [1]. 
Generation of bile, proteins, glucose storage and release, 
processing of haemoglobin, detoxification of blood, 
generation of immunological factors, and clearance of 
bilirubin are all essential tasks. Because of this, the liver is 
crucial to good health in general.  But many people fail to 
prioritize their liver health. Liver problems, from moderate to 
severe, affect a large section of the world's population as a 
result of unhealthy lifestyle choices [2].  

Chronic liver disease (CLD) includes hepatitis, cirrhosis, 
and non-alcoholic fatty liver disease (NAFLD), and it is a 
major public health concern since it contributes to the yearly 
deaths of millions of people [3][4]. Late diagnosis, 
complicated disease progression, and significant morbidity 
and mortality are clinical problems of CLD.  To intervene 
quickly, it is essential to understand how liver disease 
develops. The American Liver Foundation states that 
inflammation is the usual starting point for liver disease, 
which can lead to the liver swelling up to its normal size. 
Fibrosis, scarring caused by inflammation, can develop as a 
result of this. Cirrhosis is a severe scarring stage that can 
develop from fibrosis if left untreated. It can lead to liver 
cancer or failure [5][6]. The liver's capacity to repair itself and 
carry out its vital tasks can be severely compromised by 
advanced fibrosis or cirrhosis.  

Diagnostic procedures that have been around for a while 
include ultrasound, MRI, LFTs, and liver biopsies.  Although 
imaging allows for a visual evaluation of liver morphology 

and the detection of anomalies, LFTs evaluate liver function 
by testing enzyme levels and other chemicals in the blood.  
Liver biopsies are invasive, expensive, and generally 
unavailable due to resource constraints; they include 
removing and analysing liver tissue under a microscope [7]. 
Early detection and ongoing monitoring of CLD are becoming 
increasingly important due to the limits of conventional 
diagnostics. Modern healthcare generates vast amounts of 
heterogeneous data, including lab results, imaging studies, 
genetic markers, and lifestyle information, which are 
challenging for clinicians to integrate manually[8]. Diagnostic 
precision, workflow, and individualized treatment plans can 
all be enhanced by data-driven methods, especially ML. 

Machine learning is an AI subfield that focuses on 
improving the comprehension and analysis of massive 
datasets via the application of mathematical and statistical 
methods [9][10][11]. Predicting diseases, patient 
classification, and creating individualized treatment programs 
are all areas where it has found use in healthcare.  When it 
comes to crunching numbers, finding trends, and predicting 
outcomes with pinpoint accuracy, ML models are unrivalled 
[12]. ML has the potential to be useful in medical diagnostics 
and risk assessment of chronic diseases, and successful cases 
have been reported in diabetes, heart disease, and cancer. 
Machine learning can be used with multimodal clinical 
information, including patient records, imaging, lab results, 
and genomic data, to provide a comprehensive view of liver 
disease [13][14]. Machine learning models trained on such 
datasets can aid in early diagnosis, predict disease 
progression, track patient response to treatment, and assess the 
risk of adverse consequences [15][16]. The approach enables 
healthcare professionals to identify individuals at risk, 
diagnose more effectively, prescribe interventions promptly, 
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and ultimately improve patient outcomes. The use of ML in 
CLD management can be a great opportunity to address the 
classical constraints of diagnosis and help to provide 
personalized care. 

A. Motivation and Contribution 

The fact that chronic liver disease (CLD) frequently goes 
undiagnosed until it has progressed to a severe stage adds 
insult to injury: CLD is a growing world health concern. This, 
in turn, spurred this research. Timely intervention and 
subsequent patient outcomes, as well as a reduction in 
healthcare burdens, depend on early diagnosis. Liver biopsy 
and imaging are examples of traditional diagnostic 
procedures; nevertheless, they can be intrusive, costly, and 
time-consuming, which limits their accessibility. The growing 
availability of medical datasets, combined with advancements 
in machine learning, offers an opportunity to develop 
automated, accurate, and non-invasive predictive models. 
Early identification, continuous monitoring, and informed 
decision-making can all be facilitated by these technologies, 
which in turn can enhance patient care and prognosis.  Recent 
studies have shown promising results in the fight against liver 
disease: 

• The UCI Repository's Liver Disease Patient Dataset 
was used for this purpose; it has 30,691 records with 
11 clinical variables, making it a diversified and large-
scale dataset, ideal for predictive modelling. 

• Data quality and model resilience were enhanced 
through extensive pre-processing, which included IQR 
outlier identification, Min-Max normalization, 
SMOTE for class balance, and missing value 
imputation. 

• Feature selection to preserve the most important 
clinical variables enhanced computational 
performance, decreased dimensionality, and increased 
model interpretability. 

• Improved prediction performance by using a Gradient 
Boosting (GB) model for accurate liver disease 
classification, which leverages its ensemble learning 
capabilities. 

• A comprehensive evaluation of the reliability of the 
predictions was ensured by using the following 
metrics: F1-score, accuracy, precision, recall, and area 
under the curve (AUC-ROC). 

• Developed a non-invasive data-driven prediction 
system to assist with chronic liver disease management 
care decision-making, monitoring, and early detection. 

B. Justification and Novelty 

The proposed study is based on the idea that, because of 
the limits of current diagnostic procedures, there is an urgent 
need to create efficient, non-invasive ways to diagnose and 
monitor chronic liver disease in its early stages. This study is 
novel because it combines extensive pre-processing methods, 
feature selection, and the Gradient Boosting model to process 
immense, skewed clinical data effectively. One advantage of 
this methodology compared to the traditional one is that it can 
maximize predictive performance and can also be interpreted 
and scaled to a typical clinical scenario. The resulting system 
provides a stable, evidence-based framework to enhance early 
diagnosis, ongoing monitoring, and support clinical decision-
making. 

C. Organization of the Paper 

This paper is structured in the following way: Section II is 
a review of related studies. Section III outlines the 
recommended methodology, including data preprocessing, 
model implementation, and evaluation measures. In Section 
IV, the results of the experimental results and comparison with 
the existing methods are provided. Lastly, Section V provides 
a summary of the study, highlights the major findings, and 
outlines potential future research directions. 

II. LITERATURE REVIEW 

The current review shows recent progress in ML and DL 
in diagnosing and monitoring chronic liver disease, with a 
focus on predictive models, biomarkers, and ensemble-based 
methods on both clinical and imaging data. 

Syed et al. (2025) trained various models—including 
CNN, SVM, LR, and KNN—using ILPD resources on Kaggle 
to improve liver disease diagnosis.  Top performance was 
achieved by the CNN model, which achieved an accuracy rate 
of 96.21, precision rate of 74.76, recall rate of 92.77, and F1-
score rate of 82.80. The paper identifies the promise of Deep 
Learning algorithms, specifically CNN, to be more predictive 
than Machine Learning algorithms [17]. 

Maurya et al. (2025) conducted research to improve liver 
disease diagnosis. They created a predictor model based on 
multiple clinical data sets, achieving an astonishing accuracy 
of 83% on the test set through hyperparameter optimisation of 
logistic regression. This method outperforms the conventional 
diagnostic approach for identifying liver-related conditions in 
a non-invasive manner, and, more importantly, a cost-
effective and reliable solution has been achieved. Moreover, 
it is a good way to detect people at higher risk of progressive 
liver diseases, such as fibrosis or organ damage [18] 

Hossain Shaon et al. (2024) developed StackLD using the 
stacking-ensemble machine learning approach.  Seven highly 
effective models were quickly created after they harmonized 
with the ILPD dataset. The stacking method was found to be 
more accurate, sensitive, specific, and had a larger area under 
the curve (0.8622, 0.8933, 0.8369, and 0.9275, respectively). 
This is a useful method of separation of positive and negative 
classes in independent test procedures [19]. 

Kumar et al. (2024) created a StackLD architecture based 
on a machine learning stacking-ensemble method. They have 
utilized the dataset of Indian Liver Patient Dataset (ILPD) to 
correct the mismatches and have made seven powerful 
models. Results of 0.8622 for accuracy, 0.8933 for sensitivity, 
0.8369 for specificity, and 0.9275 for the area under the curve 
all indicate the stacking method's superior performance. This 
method successfully separates positive and negative classes in 
independent test approaches, based on a framework of more 
than 1,600 patients, to forecast subtyping of liver diseases and 
prognosis using CNNs, RNNs, and LSTMs. The method 
enabled analysis of structural abnormalities, analysis of 
multimodal data sources and analysis of sequential clinical 
data. The findings were correct, and CNN with RNN 
performed the best at 97.8% and CNN with LSTM at 94.5%. 
The model's viability and accuracy in hepatology were 
enabled by the integration of multiple data sources [20] 

P, S S and D (2023) exploring the potential for creating 
supervised ML systems to forecast liver failure.  Instead, they 
utilised data visualisation and univariate and bivariate analysis 
as part of the pre-processing steps to gain insight into the 
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dataset's properties. They compared their performance metrics 
of recall, F1 score, and accuracy after developing a multi-
classification model using machine learning methods. By 
accurately predicting cases of liver failure, the results 
demonstrated the potential medical applications of machine 
learning algorithms. The target algorithm achieved an 
accuracy of 94.48, prompting researchers to develop more 
complex models [21]. 

Minnoor and Baths (2022) studied the performance of 
several ML models in detecting and grading liver disease. One 
example of a model was the LR model. Other models included 
the Extra Tree, LightGBM, and KNN. Findings also indicate 

that current approaches are intrusive and time-consuming, 
with the shortage of qualified experts exacerbating the 
situation. The 11 features utilised to train the models yielded 
a peak accuracy of 0.89 and an F1 score of 0.88; hence, the 
Extra Trees classifier showed superior accuracy and speed in 
predicting liver disease from blood enzyme levels. [22]. 

The Table I summarizes key studies on machine learning 
for chronic liver disease, highlighting methodologies, 
performance, limitations, and future work to guide 
improvements in diagnosis, monitoring, and clinical 
applicability. 

TABLE I.  REVIEW OF MACHINE LEARNING APPROACHES FOR CHRONIC LIVER DISEASE DIAGNOSIS AND MONITORING 

Reference Methodology Dataset Performance Limitations Future Work 

Syed et al. 

(2025) 

CNN, SVM, LR, 

KNN 

ILPD, Kaggle CNN: Accuracy 96.21%, 

Precision 74.76%, Recall 
92.77%, F1-score 82.80 

Small, imbalanced 

dataset; no external 
validation 

Use larger, diverse datasets and 

integrate multimodal data 
(imaging + clinical) 

Maurya et al. 

(2025) 

Logistic Regression 

(hyperparameter 

tuned) 

Clinical records Accuracy 83% Moderate accuracy; 

lacks multimodal data 

Apply deep learning or 

ensemble methods and include 

imaging/sequential patient data. 

Hossain 

Shaon et al. 

(2024) 

Stacking ensemble 

(XGB, LGBM, DT, 

KNN, RF) 

ILPD (SMOTE) Accuracy 86.22%, Sensitivity 

89.33%, Specificity 83.69%, 

AUC 92.75% 

Synthetic balancing 

may not reflect real-

world data 

Validate models on real-world 

clinical datasets and larger 

cohorts 

Kumar et al. 

(2024) 

CNN + RNN + 

LSTM hybrid 

Clinical + 

imaging + 

sequential data 

CNN+RNN: 97.8%, 

CNN+LSTM: 94.5% 

Limited demographic 

diversity; single-

centre data 

Test across diverse populations 

and develop multimodal 

prognosis models 

P, S S and D 
(2023) 

Multi-class ML 
classification 

Pre-processed 
clinical dataset 

Accuracy 94.48%, F1-score 
and recall comparable 

Specific algorithms 
not clearly detailed; no 

deployment 

Implement models in clinical 
workflows for practical 

validation 

Minnoor and 
Baths (2022) 

Logistic Regression, 
KNN, Extra Trees, 

LightGBM, MLP 

Blood enzyme 
dataset (11 

attributes) 

Extra Trees: Accuracy 89%, 
F1-score 0.88 

Small, non-diverse 
dataset; no imaging 

integration 

Combine biomarkers with 
multimodal data to improve 

predictive accuracy 

 

A. Research Gap 

Existing studies on the diagnosis and monitoring of 
chronic liver disease demonstrate promising results using 
machine learning and deep learning techniques; however, 
critical gaps remain. Most approaches rely on limited, single-
source datasets, restricting generalizability across 
populations. Challenges such as multimodal data integration, 
longitudinal patient monitoring, and real-world deployment 
are underexplored. Current research often uses either 
biochemical, imaging, or sequential clinical data, neglecting 
comprehensive integration. Furthermore, external validation, 
interpretability, and the implementation of ensemble or hybrid 
models in clinical workflows are insufficiently addressed. 
Building reliable, multi-modal, and therapeutically 
deployable prediction systems should be the goal of future 
research. 

III. RESEARCH METHODOLOGY 

The suggested approach for using ML for Chronic Liver 
Disease Diagnosis and Monitoring includes a well-organised 
pipeline to guarantee precise predictions, as shown in Figure 
1. Retrieve the UCI repository's dataset of individuals with 
liver disease first.  Among the 30,691 patient records with 11 
variables included in the sample, 21,917 patients were found 
to have liver illness. Initial exploratory analysis used bar plots 
and correlation heatmaps to examine feature relationships and 
class imbalance. The preprocessing steps included filling in 
missing values, detecting outliers using the IQR approach, and 
normalizing the features to a range of 0 to 1 using the min-
max methodology. Applying SMOTE helped level the playing 
field between the diseased and non-diseased groups, leading 
to a more representative sample.  Feature selection is carried 
out to identify the most effective predictors. Next, the dataset 

was divided into two parts: the training set and the testing set. 
This would guarantee accurate results when evaluating the 
models and making predictions. The categorization data is 
then used to train a Gradient Boosting (GB) model. Metrics 
used to quantify the model's performance include AUC-ROC, 
F1-score, recall, accuracy, precision, and precision. The end 
product of this pipeline is a dependable system for predicting 
liver illness. This system can facilitate early diagnosis and 
continuous monitoring, ultimately enhancing patient 
outcomes and informing clinical decision-making. 

 

Fig. 1. Proposed Flowchart for Chronic Liver Disease Prediction 
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A. Data Collection 

Data from patients with liver disease worldwide are 
housed in the Liver Disease Patient Dataset, which can be 
accessed openly at the UCI ML repository.  Out of a total of 
30,691 individuals recorded in this dataset, 21,917 were found 
to have liver disease, while the remaining 8,774 were healthy. 
Every record in the collection has eleven different properties. 
A predicate is the eleventh attribute, while a target attribute is 
the twelfth. There are two categories: attributes, five decimal 
attributes, and four integer attributes. 

B. Exploratory Data Analysis 

EDA was conducted to identify underlying patterns and 
relationships among variables in the liver disease dataset. It 
highlights the influence, along with clinical features, on the 
occurrence of liver disease, while also assessing the 
distributions of demographic and behavioural factors. The 
EDA for the dataset is presented in Figure 2 below.  

 

Fig. 2. Correlation Heatmap of Liver Disease Patient Features 

Figure 2 shows the correlation matrix of clinical 
characteristics for the Liver Disease Patient Dataset. The 
direction and strength of feature-to-feature connections are 
graphically shown in the heatmap, where values range from -
1 to 1. Positive correlations are shown in shades of green, 
while negative correlations appear in blue. Diagonal elements 
display perfect correlation (1.0) of features with themselves. 
Among the observed correlations, the strongest positive 
correlations are between TP (Total Protein) and A/G 
(Albumin and Globulin Ratio) (0.77), TP and Al (Albumin) 
(0.77), and Al and A/G (0.62). The strongest negative 
correlation is observed between LD (Liver Disease) and A/G 
(-0.25). This visualization aids in identifying potential 
interactions, multicollinearity, and informs feature selection 
for predictive model development. 

 

Fig. 3. Histogram of Dataset Attributes 

The distribution of individual features in the Liver Disease 
Patient Dataset was shown in Figure 3, which is a set of 
histograms. Albumin (AL), albumin and globulin ratio 
(AGR), total proteins (TP), gender (GN), total bilirubin (TB), 
direct bilirubin (DB), alkaline phosphatase (AP), alanine 
aminotransferase (ALA), aspartate aminotransferase (ASA), 
total proteins (TP), and the liver disease class label (LD) are 
all displayed in separate subplots. The majority of 
characteristics, including TB, DB, AP, ALA, and ASA, have 
a high concentration of lower values and are right-skewed, 
suggesting that they do not follow a normal distribution. In 
contrast, Age, TP, AL, and AGR appear to be more normally 
distributed. The class label LD shows a clear imbalance, with 
a majority of instances belonging to one class, highlighting the 
need for techniques to address class imbalance during model 
training.  

C. Data Pre-Processing  

Preparing the data to construct a robust and dependable 
system is crucial before implementing ML approaches into the 
model. Different data preparation challenges were addressed 
in this study using various methods. The dataset was pre-
processed using missing value imputation and Detection and 
Removal of Outliers. Preprocessing, the data transformation 
and normalization, is carried out. The following steps of pre-
processing are as follows: 

• Missing value imputation: Improving data 
representation, stability, and reducing bias are all 
goals of missing value imputation. It also computes 
the proportion of empty attributes by using isnull() to 
locate missing values. 

• Detect and Remove Outliers: The method entails 
searching the dataset for data points that stand out 
significantly from the others. Prediction models are 
vulnerable to errors if they are not handled 
appropriately. To highlight any dataset outliers, used 
the IQR method and placed the feature cutoff at three 
points. 

D. Data Normalization  

The records were normalized using the min-max 
technique, which limits values to a range of 0 to 1. An increase 
in classifier efficiency and a decrease in the effect of outliers 
were the intended outcomes of this [23]. Or this normalization, 
consulted the following mathematical Equation (1): 

 𝑋′ =
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 () 

Where X is the initial feature value, 𝑋′is its normalized 

value, 𝑋𝑚𝑖𝑛Is its lowest value, and 𝑋𝑚𝑎𝑥Is its highest. 

E. Data Balancing using SMOTE 

Machine learning model performance can be adversely 
affected by class imbalances in datasets; data balancing 
approaches are essential for rectifying this issue, especially in 
classification tasks where certain classes are 
underrepresented. The SMOTE method is effective because it 
enhances model stability and accuracy by generating new 
samples for the minority group, rather than simply replicating 
existing ones [24]. The distribution of patients in the Liver 
disease and no liver disease groups before and after SMOTE 
administration is shown in Figure 4. The dataset before 
SMOTE included 21,917 people with liver disease and 8,774 
without liver disease. Following SMOTE, the distribution 
became almost balanced, with 13,050 and 13,161 patients in 
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the two groups, which demonstrates how SMOTE is effective 
in reducing bias in the class and providing a more accurate 
model for training. 

 
Fig. 4. Patient Distribution Before and After SMOTE 

F. Feature Selection 

The goal of variable or attribute selection, often called 
feature selection, is to build effective predictive models by 
picking a subset of important features. It is based on the 
assumption that datasets frequently have hidden or redundant 
features - redundant features do not add new information not 
already represented. Still, irrelevant features add little or no 
predictive information. In addition to enhancing model 
performance through complexity and overfitting reduction, 
feature selection also provides sufficient information about 
which features hold the most power, as well as their 
relationships with each other. Figure 5 shows a horizontal bar 
chart that summarizes the feature important scores of a 
Gradient Boosting model. The features are listed on the y-axis 
and the x-axis represents the importance score. AG, ALA, DB, 
and AP. The chart shows that the strongest feature is DB, 
followed by AP, and then ALA. The other features, such as 
AG and GN, have a small effect on model predictions. This 
visualization once again justifies the role of feature selection 
as a tool to illuminate important variables and make the model 
more intelligible and predictive. 

 
Fig. 5. Feature importance Plot 

G. Data Splitting 

Data was divided into training and testing samples to 
evaluate the model's performance and generalizability.  To be 
more precise, the model was trained using 80% of the data in 
order to discover patterns and optimize its parameters, and its 
predicted accuracy on new data was evaluated objectively 
using the remaining 20%. 

H.  Proposed Gradient Boosting Model(GB) 

The ensemble technique known as "Gradient Boosting" 
leverages the interdependence of base estimators.  Using the 
errors of the previous iteration's base estimator as a learning 
tool, this algorithm trains a new one [25]. To merge weak 
learners at each stage to "boost" performance and produce a 

strong learner, this method is known as boosting.  Three 
primary aspects are taken into account by GB to ensure 
optimal performance: the loss function, a weak learner, and an 
additive model to minimize the loss function in conjunction 
with the weak learner [26].  Step one is to write the formula as 
it appears in Equation (2). 

 𝐹(𝑥) = ∑ 𝑓𝑚(𝑥)𝑀
𝑚=0  () 

The optimization approach determines the sequential 
incremental functions, also called "boosts," where 𝑓0(𝑥) is an 
initial estimate and {𝑓𝑚(𝑥)} 1

𝑀 . One of the most popular 
optimisation approaches for the loss function is steepest 
descent. As mentioned in Equation (3), it specifies the 
increment of {𝑓𝑚(𝑥)} 1

𝑀. 

 𝑔𝑚(𝑥) = {[
𝜕∅(𝐹(𝑥))

𝜕𝐹(𝑥)
] 𝐹(𝑥) = 𝐹𝑚 − 1(𝑥)} () 

Where 𝐹𝑚−1 = ∑ 𝑓𝑖(𝑥)𝑚−1
𝑖=0 , Then, the line search 

multiplier ρm is found in the same way as in Equations (4) and 
(5). 

 𝑓𝑚(𝑥) = −𝜌𝑚𝑔𝑚(𝑥) () 

 𝜌𝑚 = 𝑎𝑟𝑔 min
𝜌

∅[𝐹(𝑥) = 𝐹𝑚 − 1(𝑥) − 𝜌𝑚𝑔𝑚(𝑥) () 

Here, the negative gradient −gm(x) defines the steepest 
descent direction, ensuring that the algorithm minimizes the 
loss function, improves performance, and reduces the risk of 
overfitting. 

I. Evaluation Metrics 

The accuracy, precision, recall, and F1-score metrics were 
used to measure performance. These metrics were derived 
from the total number of correct and incorrect classifications. 
This information is inferred from the confusion matrix, which 
includes TP, TN, FP, and FN, which stand for true positives 
and true negatives, respectively. Further definitions of 
Accuracy, Precision, F1-Score, and Recall can be found 
below: 

Accuracy: The trained model's accuracy as a percentage 
of the total occurrences in the dataset (input samples) is 
calculated using Equation (6)- 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+Fp+TN+FN
 () 

Precision: The ratio of a model's true positives to its 
overall number of true positives is a measure of its prediction 
accuracy. Accuracy shows. As Equation (7), shows how well 
the classifier predicts the positive classes- 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
 () 

Recall: This statistic represents the proportion of positive 
events that were really predicted out of all the cases that were 
expected to be positive. It can be expressed mathematically as 
Equation (8)- 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃+𝐹𝑁
 () 

F1 score: It aids in maintaining a healthy equilibrium 
between recall and precision by combining the two concepts 
of the harmonic mean. Its range is [0, 1]. It is mathematically 
expressed as Equation (9)-  

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 () 



© JGRMS 2025, All Rights Reserved   58 

ROC-AUC Curve: The ROC curve is a popular tool for 
assessing the efficacy of classification models across a range 
of threshold values. The AUC is a probabilistic curve that 
measures the model's discriminatory strength. A better 
discriminator will have a higher AUC. To create a ROC curve, 
one needs to use Equations (10) and (11) to draw a straight 
line that connects the True Positive rate (TPR) and the False 
Positive rate (FPR). The Y-axis shows the TPR, and the X-
axis shows the FPR. 

 𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 () 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 () 

A thorough understanding of the model's overall 
classification efficacy can be obtained by combining these 
evaluation metrics. 

IV. RESULTS AND DISCUSSION  

This part describes the research design and the 
performance of the proposed Gradient Boosting model. The 
model was generated and tested on a high-performance 
computing platform with an Intel Core i9-10900 K processor, 
3.70 GHz, 64 GB of DDR4 random-access memory, a 500 GB 
NVMe SSD, and 2 TB of disk memory, running Windows 11 
Pro on a Jupyter notebook. The system provides effective data 
processing and computing power, supporting the development 
and testing of robust models. As it is observed in Table II, the 
performance of the model can be summarized as follows: The 
model reached an accuracy of 98.80, precision of 98.50, recall 
of 98.50, F1-score of 98.50, and ROC-AUC of 98.60, which 
is relatively high in its ability to classify patient data. Those 
findings indicate the model's effectiveness in detecting actual 
positive cases and reducing false positives, thereby 
demonstrating its power and overall efficacy in forecasting 
chronic liver disease. 

TABLE II.   EXPERIMENT RESULTS OF PROPOSED MODELS FOR 

CHRONIC LIVER DISEASE PREDICTION ON LIVER DISEASE PATIENT 

DATASET 

Performance matrix Gradient Boosting 

Accuracy 98.80 

Precision 98.50 

Recall 98.50 

F1-Score 98.50 

ROC-AUC 98.60 

 

Fig. 6. Confusion Matrix of the Gradient Boost Model for Liver Disease 

Prediction 

Figure 6 shows the GB model's confusion matrix for LD 
prediction; the model works as expected. The matrix indicates 
that of all cases 8676 were rightfully found to have LD (true 
positives), 3454 were rightly found to not have LD (true 
negatives). This indicates that the accuracy of classifying 

positive and negative cases is high. With only 80 false 
negatives (LD cases wrongly named as not having the disease) 
and 67 false positives (LD cases wrongly branded as having 
the disease), the model proved to be highly accurate.  The GB 
model appears to be highly accurate and trustworthy in 
predicting liver illness, based on the minimal number of false 
positives and false negatives. 

 

Fig. 7. ROC Curve of the Gradient Boost Model for Liver Disease 

Prediction 

Figure 7 shows a ROC curve depicting a GB model used 
for the prediction of liver disease. See how various threshold 
values affect the TPR and FPR in this graph. The solid blue 
curve of the model remains far higher than the diagonal 
dashed line, which stands for a random guess. Differentiating 
between individuals with and without liver illness is certainly 
a strong suit of the model, as evidenced by an AUC of 0.9860, 
which is quite close to 1. A high area under the curve (AUC) 
indicates that this predictive model is robust and accurate. 

A. Comparative Analysis 

In this section, the comparison of various ML models in 
chronic liver disease prediction is given, which is summarized 
in Table III. Of all the models compared, SVM achieved an 
accuracy of 71.35%, while RF performed better at 87%. The 
MLP has shown a significant improvement in its accuracy to 
96.43%. XGBoost (XGB) then improved predictive precision 
to 92.07%. The GB model outperformed the competition, 
demonstrating its superior performance and reliability for 
patient data classification with an impressive accuracy rate of 
98.80%. Table III explicitly shows the incremental accuracy 
improvement with models and the merit of ensemble-based 
approaches, particularly Gradient Boosting, in achieving 
effective and accurate chronic liver disease prediction.  

TABLE III.  ACCURACY COMPARISON OF DIFFERENT  PREDICTIVE 

MODELS OF CHRONIC LIVER DISEASE PREDICTION USING THE LIVER 

DISEASE PATIENT DATASET 

Models Accuracy 

SVM[27] 71.35 

RF[28] 87 

MLP[29] 96.43 

XGBoost[30] 92.07 

GB 98.80 

The primary advantage of the proposed Gradient Boosting 
(GB) model is that it is highly predictive and capable of 
diagnosing chronic liver disease. The GB model can be used 
effectively to learn the complex non-linear patterns and 
interactions of the dataset by sequentially incorporating 
several weak learners, which is two times superior to 
conventional machine learning algorithms. It also 
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demonstrates a good level of accuracy and recall, reducing 
false positives and false negatives, which is crucial in clinical 
decision-making. Additionally, the ability to work with 
asymmetrical and heterogeneous data, along with the model's 
flexibility, allows it to be applied in the medical field on a 
large scale. 

V. CONCLUSION AND FUTURE STUDY 

Machine learning holds significant promise for improving 
CLD diagnosis and surveillance. Using extensive 
preprocessing methods, feature elimination, and data 
balancing of the UCI Liver Disease Patient Dataset, a GB 
model was constructed that achieved high performance, with 
98.80% accuracy, 98.50% precision, recall, and F1-score, and 
an AUC of 98.60. These results suggest that ensemble-based 
models can generate more complex data patterns than 
traditional models, such as SVM, RF, and XGBoost. The 
suggested solution will overcome the drawbacks of invasive 
and expensive diagnostic methods, providing a scalable, non-
invasive, and effective framework to assist in clinical 
decision-making, early intervention, and continuous patient 
monitoring. However, there are still several challenges. The 
majority of existing datasets lack diversity and consist of 
single-source clinical data, limiting their ability to generalise 
to the population. Moreover, the actual application and 
clinical interpretability of such models are not studied.  

Future research should consider using multimodal data, 
including imaging data, biochemical data, genomic data and 
sequential patient data to increase predictive ability. The 
implementation of explainable AI will also increase usability 
and trust among healthcare experts. Last but not least, clinical 
trials and the ability to integrate them into hospital decision-
support systems are the key to transforming predictive models 
into practical applications that enhance patient outcomes and 
advance precision medicine. 
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