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Abstract—Medical imaging faces several significant challenges, including image segmentation, cross-modal translation, and real-value 

prediction. Link CT and MRI scans using a well-liked method.  Image quality and diagnostic efficacy can be enhanced with this 

technique.  One new area of data science is brain imaging genetics, which aims to better understand the brain's normal and abnormal 

phenotypic, molecular, and genetic features and how they influence its function and behaviour.  Enhancing diagnostic accuracy in 

neurological diseases, this work proposes a multimodal approach to analyzing brain tumor imaging data for healthcare analytics. It 

leverages modern predictive models.  Multiple models were tested using extensive data, such as CNN, Report Guided Net, MLP, and 

ResNet18. With an F1-score of 99.12%, recall of 99.67%, precision of 99%, and accuracy of 99.28%, the Convolutional Neural 

Network (CNN) model stood out from the contest.   These results prove that deep learning techniques, such as CNNs, can understand 

complex multimodal images and extract valuable information from them.  The results provide credence to the idea that these models 

can be useful in automating the identification of brain disorders by incorporating them into clinical procedures. 

Keywords—Smart Healthcare, Artificial Intelligence, Neuroimaging, Magnetic Resonance Imaging, Computed Tomography. 

I. INTRODUCTION 

Diagnosing diseases is a major obstacle in contemporary 
healthcare since prompt treatment interventions are possible 
with early and correct detection of pathological conditions, 
which in turn minimizes the risks of illness progression and 
sequelae. Considering the prevalence and complexity of 
conditions such as Alzheimer's, breast cancer, depression, 
cardiovascular disease, and epilepsy, this becomes even more 
crucial [1]. A brain tumor is a benign, abnormal growth found 
in or around the brain.  A tumor is an abnormal mass of tissues 
that might be solid or filled with fluid.  The tumor is formally 
called a neoplasm.  Worldwide, there are about 18,000,000 
new cases of cancer per year, with about 20,000 of those being 
brain tumors [2][3].  Most cases (102,260 or 34.4% of the 
total) and deaths (77,815 or 32.3% of the total) occurred in 
areas with very high human development index (HDI).  
Surgical navigation, clinical diagnosis, and radiation surgery 
are just a few examples of the numerous medical applications 
made possible by medical pictures, which have led to their 
extensive use in healthcare systems.  This is where MRI and 
computed tomography (CT) come in as two of the most 
important medical images [4][5].  While magnetic resonance 
imaging (MRI) is superior at depicting the finer details of soft 
tissues, such as blood vessels, computed tomography (CT) 
scans reveal the exact locations of solid structures, including 
skeletal tissues.  But to get a whole picture of a patient's 
condition, it's usually not enough to use just one diagnostic 
tool.  One potential remedy to this issue is the fusion of CT 
and MRI images, which combines the best features of both 
imaging modalities [6].  The fusion technique allows for the 
efficient merging of CT and MRI images, which enhances the 
information and completeness of the merged image [7].  
Clinicians can now possess a powerful tool that helps them 
attain greater diagnostic precision, assists them in real-world 
treatment planning and gauging, and in utilizing the 
synergistic combination of structural and soft tissue data. 

Neuro-imaging has become a revolutionary tool of 
learning the structure and functioning of the brain and thus 
equally provides valuable insight into neurological and 
psychiatric disorders [8][9]. sMRI can be used to examine 
cortical thickness, the volume of gray matter, and the presence 
of anatomical abnormalities, whereas fMRI can be used to 
analyze dynamic brain activity and brain connections, thus 
allowing the exploration of functional and anatomical changes 
in a number of diseases [10][11][12]. Imaging genomics is the 
field that combines neuroimaging with genomic data to study 
the genetic, molecular, and phenotypic basis of brain function 
and dysfunction [13]. Data analytics methods that can glean 
useful insights from high-dimensional datasets are essential 
for dealing with the enormous computational and statistical 
difficulties posed by multimodal brain imaging data due to its 
complexity and size. 

Deep learning, machine learning, and AI in general have 
emerged as effective tools for tackling these issues in the last 
several years [14][15]. Classification, detection, 
segmentation, and registration are just a few of the many 
medical imaging tasks for which DL models have shown 
outstanding performance, and the literature is full of examples 
[16][17]. Most frequent are classification, detection and 
segmentation that would allow the characterization of 
pathological regions, quantification of structural or functional 
abnormalities, and clinical decision support [18][19][20]. Use 
of deep learning with multimodal brain imaging data can 
combine complementary brain information that sMRI, fMRI 
and other brain imaging modalities provide, to increase 
diagnostic accuracy, prognosis and clarity of understanding 
complex brain conditions[21][22]. 

A. Motivation and Contribution 

The increasing demand for automated diagnostic tools that 
are accurate, efficient, and well-suited to neurological 
illnesses like dementia is driving this work. Manually 
analysing brain tumour imaging data is a time-consuming and, 
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frequently, inconsistently accurate method of diagnosis. With 
the increasing availability of Brain tumor multimodal image 
Datasets, there is a significant opportunity to apply advanced 
ML and DL techniques to extract meaningful patterns and 
improve diagnostic outcomes. This research is driven by the 
potential to leverage these technologies, especially the CNN 
model, to enhance early detection, support clinical decision-
making, and ultimately contribute to better patient care and 
management. The study below makes a number of important 
contributions to the field: 

• Developed a robust predictive framework using 

Brain tumor multimodal image Datasets for 

healthcare analytics. 

• Implemented a complete data pipeline including 

image encryption-decryption, preprocessing, 

normalization, and feature extraction. 

• Addressed class imbalance issues through data 

visualization and analysis of distribution patterns. 

• Demonstrated the practical applicability of DL 

models in improving diagnostic accuracy in brain 

imaging analysis. 

• Conceived of a CNN model specifically for the 

purpose of using MRI scans of the brain to identify 

different stages of dementia. 

• Metrics like F1-score, memory, accuracy, and 

precision were used to carefully evaluate the model's 

performance. 

B. Justification and Novelty 

Utilizing brain tumor multimodal image data to aid in 
early dementia detection is crucial, and this study is being 
conducted because manual interpretation is time-consuming 
and not always accurate.  A key innovation of the suggested 
method involves creating and testing a custom Convolutional 
Neural Network (CNN) model that excels with multimodal 
brain MRI data, outperforming standard models. Additionally, 
the integration of an image encryption-decryption mechanism 
ensures data security without compromising diagnostic 
quality a crucial aspect in medical imaging. This combination 
of high-accuracy classification and secure data handling 
represents a novel contribution toward building practical, AI-
driven solutions for healthcare analytics. 

C. Structure of the paper 

The following is the paper's outline: It examines previous 
research and identifies areas where further study is needed in 
Section II. Section III details the datasets, preprocessing 
methods, and models that were employed.  In Section IV, the 
results and a critical review are given.   Section V presents our 
decision and suggestions for further study. 

II. LITERATURE REVIEW  

A comprehensive literature analysis was conducted to 
inform and enhance the creation of this work, which focusses 
on healthcare analytics using multimodal brain imaging data. 

Wu et al. (2025) Despite CLIP's practical success in the 
real world, its medicinal applications remain underexplored.  
In order to tackle these obstacles, we explored three possible 
directions:  1) present a new CLIP variant that classifies brain 
and skin cancers using four convolutional neural networks 
(CNNs) and eight vein-invasive tumors (VITs) as image 
encoders. 2) To prevent data privacy breaches, integrate 12 
deep models with two federated learning techniques. 3) To 

enhance the deep models' ability to generalize to unseen 
domain data, employ traditional machine learning (ML) 
methods.  In the HAM10000 dataset, maxvit exhibits the 
greatest averaged (AVG) test metrics (AVG = 87.03%) with 
multimodal learning, while convnext_1 shows remarkable test 
performance with an F1-score of 83.98% compared to 
swin_b's 81.33% in the FL model [23].  

Chen et al. (2025) investigate and contrast single-modal 
and multimodal breast cancer prediction models using 
medical imaging modalities.  Using 790 patients' medical 
imaging data, including 2,235 mammography images and 
1,348 ultrasound images, an ideal model for constructing the 
multimodal classification model was identified.    Examining 
and contrasting six distinct DL classifiers was the subsequent 
step.     Several metrics, such as AUC, sensitivity, specificity, 
precision, and accuracy, were used to assess the performance 
of the multi- and single-modal classification models.     
According to the experimental data, the multimodal 
classification model achieves higher specificity (96.41% vs. 
93.78% vs. 76.27% vs. 91.05% overall) than the single-modal 
models [24]. 

Asish et al. (2024) applied various ML algorithms, 
including kNN, RF, 1D-CNN-LSTM, and 2D-CNN, to 
classify a group of subjects based on their multi-modal 
features and the aspects of their grouping tests, including 
cross-subject, cross-session, and gender tests. They found that 
the RF classifier achieves the highest accuracy over 83% in 
the cross-subject test, around 68% to 78% in the cross-session 
test, and around 90% in the gender-based grouping test 
compared to other models. The extracted features and their 
SHAP analysis showed higher scores of the occipital, 
prefrontal areas of the brain, gaze angle, gaze origin, and head 
rotation features of the eye tracking [25]. 

Odusami et al. (2024) The goal is to find out how well 
machine learning can correctly group the different stages of 
Alzheimer's disease using a mix of neuroimaging data.   We 
also use the Wilcoxon signed-rank test to statistically assess 
the accuracy ratings of the present models.   The combined 
sensitivity in discriminating between NC and MCI was 
83.77% (95% CI: 78.8, 87.7%), between AD and NC 94.60% 
(90.8%, 96.9%), and between pMCI and sMCI 80.41% 
(74.7%, 85.1%).   The sensitivity to differentiate NC and mild 
cognitive impairment (MCI) was 83.77% with a 95% 
confidence range of 78.87% to 87.71%.  A total of 94.60 
sensitivity was obtained to differentiate between NC and 
Alzheimer disease (AD).  Similarly, 86.41% could distinguish 
the progressive (pMCI) and stable (sMCI), and 86.63 could 
distinguish between NC and early moderate cognitive 
impairment (EMCI) (82.4332 89.95) [26].  

Jansi et al. (2023) The greatest hindrance to the detection 
of brain tumors is its variability in case of location, structure, 
and arrangement of the tumor size.  Using CNNs, data 
augmentation, and picture preparation, this study lays forth a 
comprehensive method for detecting brain tumors.  This 
research makes use of preprocessed, enlarged, and erosion-
enhanced multimodal MRI data from the Brats dataset, which 
includes brain tumors.  By improving visibility of the tumor 
regions, dilation and erosion allow for more precise detection.  
The next step is to train a CNN model, prioritizing data 
shuffling for greater performance.  The TensorFlow and Keras 
libraries played a crucial role in constructing the suggested 
system.  Using the Brain Tumor Brats dataset, the suggested 
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framework achieved a respectable detection accuracy of 
98.2% in brain tumor identification [27]. 

Ghosh et al. (2023) GCNN is trained to distinguish 
between normal and schizophrenia by analyzing multimodal 
human brain connectomes.  Specifically, construct structural 
connectivity graphs using diffusion tensor imaging data and 
functional connectivity graphs using functional magnetic 
resonance imaging data to train and evaluate a network.  
GCNN method is compared to various popular classification 
benchmarks, including one that is based on support vector 

machines.  results demonstrate that the suggested graph 
convolution outperforms the alternatives in terms of F1 scores 
(0.75 for schizophrenia classification).  A multimodal 
approach to diagnosing and predicting the course of mental 
illness may be possible using this approach [28]. 

The table I provides a summary of a few recent studies on 
multimodal brain imaging in healthcare analytics, with an 
emphasis on models, data used by the studies, the main results, 
and reported challenges by the research 

TABLE I.  OVERVIEW OF RECENT STUDIES ON PREDICTIVE MODELING OF MULTIMODAL BRAIN IMAGING DATA FOR HEALTHCARE ANALYTICS USING DEEP 

LEARNING 

Author Proposed Work Dataset Key Findings Challenges/recommendations 

Wu et al., (2025) Introduced a novel CLIP variant 

with CNNs & ViTs for brain and 
skin cancer; combined 12 deep 

models with FL; integrated 

traditional ML for generalization. 

HAM10000 dataset MaxViT achieved highest AVG = 

87.03% (multimodal learning); 
ConvNeXt_1 had best F1-score 

(83.98%) vs Swin_b (81.33%) in 

FL. 

Limited exploration of CLIP in 

medical field; need stronger 
domain generalization & 

privacy-preserving methods. 

Chen et al., 

(2025) 

Models for predicting breast 

cancer using single-modal imaging 

versus multi-modal imaging 
(mammography + ultrasound). 

790 individuals with 

a total of 2,235 

mammography and 
1,348 ultrasound 

scans 

Specificity (96.41%), accuracy 

(93.78%), precision (83.66%), and 

area under the curve (0.968) were 
all better for the multimodal model 

than for the single-modal. 

Sensitivity was better in single-

modal models; multimodal 

models require bigger datasets 
and modal balancing. 

Asish et al., 

(2024) 

Applied ML methods (kNN, RF, 

1D-CNN-LSTM, 2D-CNN) to 
classify distraction states from 

multimodal features. 

Multimodal features 

incl. brain (EEG), 
eye tracking 

RF achieved highest accuracy: 

>83% cross-subject, ~68–78% 
cross-session, ~90% gender-based 

grouping. SHAP showed brain 

(occipital, prefrontal) & gaze 
features were key. 

Performance dropped in cross-

session tests, indicating a need 
for robustness across sessions. 

Odusami et al., 

(2024) 

Statistical validation with the 

Wilcoxon test; a systematic review 
on ML for Alzheimer's disease 

staging utilizing multimodal 

neuroimaging. 

Multimodal 

neuroimaging 
datasets (literature 

review) 

The pooled sensitivity for MCI 

compared to NC is 83.77%, for AD 
it is 94.60%, for pMCI it is 

80.41%, and for EMCI it is 

86.63%.  Joint specificity: AD 
against NC = 93.49 percent, etc. 

Variability across studies; 

requires harmonization of 
datasets & standardized 

benchmarks. 

Jansi et al., 

(2023) 

Brain tumor detection via 

preprocessing, augmentation & 

CNN on multimodal MRI. 

Brain Tumor Brats 

dataset 

Achieved 98.2% accuracy; 

preprocessing (dilation, erosion) 

improved tumor region visibility. 

Performance dependent on 

preprocessing quality; real-time 

clinical validation required. 

Ghosh et al., 

(2023) 

Used GCNN to classify 

schizophrenia from multimodal 

brain connectomes (DTI + fMRI). 

Multimodal 

connectome data 

(DTI, fMRI) 

GCNN outperformed SVM and 

benchmarks, achieving the best 

F1-score of 0.75. 

Limited F1-score leaves room for 

improvement; larger sample sizes 

& robust models recommended. 

 

Fig. 1. Proposed flowchart for Multimodal Brain Imaging Data for 

Healthcare Analytics 

III. RESEARCH METHODOLOGY  

The proposed methodology of Focus on Multimodal Brain 
Imaging starts with the gathering of the Brain tumor 
multimodal image collection. The preprocessing steps 
covered data cleansing, elimination of inconsistency and 
noise, scaling and min-max normalization and feature 
extraction. The data were then partitioned into training and 
testing in order to effectively learn and assess the performance 
of the training. The last step was to train the proposed CNN 
model on the cleaned data. This model excels at managing 
time-dependent dependencies and patterns, and it successfully 
classified the stages of dementia.  The next step was to 
evaluate the model's performance using industry-standard 
metrics including F1-score, recall, accuracy, and precision. 
This would ensure that healthcare analytics produced correct 
predictions and classifications. The entire steps involved are 
presented in Figure 1. 

Each step of the proposed flowchart for using multimodal 
brain imaging in healthcare is explained in detail below. 

A. Data collection 

The dataset includes a variety of medical pictures, 
including MRI and CT scans, which are used for the detection 
and study of brain tumors.  Brain tumors cause a wide variety 

Data Collection 

Brain tumor 

multimodal image 
Dataset 

Data pre-processing  

Remove inconsistencies in the 
data 

Remove Noise 

Min-Max Normalization  

Feature Extraction 

Training Testing  

Data Splitting 

Model evaluation 
accuracy, precision, 

recall and f1 score  

Implement Convolutional 

Neural Network (CNN) 
model  Results  
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of structural and functional alterations, and the combined 
pictures from the two modalities reveal a great deal about 
these changes.  Each image in the collection is anatomically 
labelled with the type of tumor (e.g., glioma, meningioma, 
etc.) and its location in the brain. The dataset consists of high-
resolution CT and MRI scans taken from various individuals.  
For the experiment, they manipulated 50 sets of greyscale 
images and 256×256 scaled images from CT and MRI scans.  
One example is the test set shown in Figure 2, which consists 
of 50 image pairs. Data visualizations such as bar plots were 
used to examine data distribution, feature correlations etc., are 
given below:  

 

Fig. 2. Fifteen pairs of CT-MRI images for evaluation. In each pair, the 

left is the CT image, and the right is the MRI image 

 

Fig. 3. MRI and CT Brain of size 256 × 256 pixels and its fused images. (a) 

Input-MRI image. (b) Input-CT image. (c) Fused MRI-CT image 

Figure 3 illustrates brain imaging using MRI and CT 
modalities along with their fused counterparts, each resized to 
256 × 256 pixels. Column (a) shows the input MRI images, 
which provide detailed soft tissue contrast useful for 
visualizing brain structures and abnormalities. Column (b) 
presents the corresponding CT images, which highlight bone 
structures and calcifications with high spatial resolution. 
Column (c) depicts the fused MRI-CT images, where 
information from both modalities is integrated, enhancing 
diagnostic interpretation by combining the anatomical clarity 
of CT with the soft tissue detail of MRI. This fusion facilitates 
comprehensive analysis for improved medical decision-
making. 

Figure 4 the image sequence demonstrates the process of 
image encryption and decryption applied to a brain CT and 
MRI scans. The first panel shows the original image, clearly 
depicting the structural details of the brain. The middle panel 
presents the encrypted image, where the original features are 
completely obscured, ensuring data confidentiality and 
protection against unauthorized access. The final panel 

displays the decrypted image, which accurately reconstructs 
the original scan, preserving the anatomical integrity. This 
figure illustrates the effective use of the encryption-decryption 
method to secure important medical imaging information 
without degrading image quality.  

 

Fig. 4. Encryption and decryption of images 

B. Data pre-processing  

Data preparation included the organization of brain tumor 
multimodal images, combining their data and cleansing to 
maintain similarity. Relevant characterics were then 
discovered that were to facilitate handy analysis. Any form of 
data was pre-processed to eliminate noise and inconsistency 
to ensure quality of data. Model training was based on the 
standardization of the data through normalization and data 
transformation in this phase. The key features of the pre-
processing step are listed below: 

• Data exploration. The dataset sample size, the 

distribution of features, and analysis add some 

insights into the inner nature of the dataset and 

establish a good basis to choose preprocessing 

techniques. 

• Remove inconsistencies in the data: To avoid the 
lack of consistency, focus on correcting errors, 
standardizing the formats, and enforcing data 
governance. This involves data validation, data 
cleaning, data transformation and so on.  

• Remove Noise: The Gaussian blur filter was used to 
remove noise in photos and to enhance the output of 
a better quality. This kind of filtering actually 
lightens up the picture and dims down notable detail. 
Images adjusted with high-pass filter to sharpen 
image and complex features are retrieved. This filter 
makes edges and smaller details sharper and enables 
easier discernment of the significant details in an 
image. 

C. Min-Max Normalization  

The data were put in normalized form by applying the min-
max method of keeping values within a range between 0 and 
1.  The aim of such an action was to get the classifiers to 
perform better and to reduce the influence of outliers.  In order 
to standardise, the following formula was used (1): 

 𝑋′ =
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 () 

X indicates the initial feature value, 𝑋′ stands for the 

normalized value, 𝑋𝑚𝑖𝑛  denotes the feature's minimum, and 

𝑋𝑚𝑎𝑥 denotes its maximum. 

D. Feature Extraction 

The feature extraction technique was binary thresholding.  
In this approach, images in grey scale can be represented in 
binary form (with the foreground pixels assigned to white and 
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the background pixels in black) given a hackneyed size set by 
a user.  This aids the model in differentiating between tumor 
kinds and healthy parts by drawing attention to the object's 
outline, in this case the tumor regions [29].  Employed contour 
detection algorithms to determine the largest contour in each 
image- the tumor region- through thresholding, and then 
cropped the image to highlight that location within the region 
of interest (ROI) [30].  Due to this, there is the model capable 
of concentrating on the essential sections of the picture 
without the need to incorporate excessive background.  In the 
case of input size homogeneity, generated photos were 
trimmed and reduced to a normalized size of 256 X 256 pixels. 

E. Data Splitting 

Training and testing sets were split so that we could assess 
the performance of the model.  70 % of the data was used to 
train the model and calculate model parameters. The 
remaining 30% was not dedicated to training purposes but 
reserved to test the model performance and estimation of 
parameters. 

F.  Proposed Recurrent Neural Network (CNN) model 

Deep learning has greatly changed the rate at which the 
doctors will be able to diagnose diseases in an accurate and 
efficient manner by improving the processing of images using 
CNNs.  CNNs have helped tremendously in medical image 
processing and diagnosis [31].  The several tests that have 
been done on CNNs include but are not limited to object 
segmentation, object detection, and image categorizing which 
have been reported that CNNs are better than conventional 
CAD systems.  A major advantage compared to more 
traditional machine learning techniques is that CNNs can learn 
complex picture features without the need to engineer feature 
extraction, which requires the assistance of a human being.  
CNNs have been applied in several diagnostic imaging 
modalities in the field of medicine such as in MRI and CT.  
With the adaptive use of CNNs, radiologists and doctors can 
make more accurate and expedited diagnoses since the 
accuracy levels of these variables are impressive when used to 
interpret medical images.  In order to learn features, 
convolutional neural networks (CNNs) use a multi-layered 
architecture that incorporates non-linear transformations.  The 
input data is displayed at the visible layer as a tensor, which is 
a multidimensional data array.  Examples of this type of 
topology include time-series data, which is essentially a 1D 
grid sampling at regular intervals, 2D picture pixels, 3D video 
structure, etc.  The next step involves extracting multiple 
abstract characteristics through a series of hidden layers.  For 
example, using equation (2), a two-dimensional kernel h can 
calculate the 2D convolution given an input x that is two 
dimensions in size: 

 (𝑥 ∗ ℎ)𝑖, 𝑗 = 𝑥[𝑖, 𝑗] ∗ ℎ[𝑖, 𝑗] = ∑𝑛∑𝑚𝑥[𝑛, 𝑚] · ℎ[𝑖 − 𝑛][𝑗 −
𝑚] () 

their individual weights multiplied with regard to a small 
input area to which they are linked. 

A feature map is created at the filter's output by including 
a bias term and applying a point-wise nonlinearity g following 
the convolution.   The filters are defined by the input x, the 
bias 𝑏𝑙, and the coefficients or weights, given a convolutional 

layer and a l-th feature map ℎ𝑙 .  Equation (3) can be used to 

obtain the feature map ℎ𝑙  from 𝑊𝑙.: 

 ℎ𝑖,𝑗
𝑙 = 𝑔(𝑊𝑙 ∗ 𝑥)𝑖𝑗 + 𝑏𝑙 () 

where 𝑔 (·) is the activation function and ∗ is the 2D 
convolution defined by Equation (3). 

Deep neural networks often use the rectifier activation 
function, which is defined as 

 𝑔(𝑥) = 𝑥+ = 𝑚𝑎𝑥(0, 𝑥) () 

G. Evaluation metrics 

TP, FP, TN, and FN are the four classifications used in AI 
diagnostic tasks.  It is common practice to compute 
performance evaluation measures for binary classification 
tasks using the confusion matrix.  Positive cases, or the 
positive class that was accurately classified as positive, are 
represented by TP [32].  A negative instance is represented by 
TN if and only if the negative class was accurately identified 
as negative.  The term "false positive" (FP) describes cases 
where the negative class was mistakenly classified as positive.   
When members of the positive class are mistakenly classified 
as negative, this is known as a false negative (FN).   Important 
evaluation measures such as recall, accuracy, precision, and 
F1-score were calculated using these data, as displayed in the 
matrix below: 

Accuracy: A metric that compares the trained model's 
output predictions to those of the entire dataset (input 
samples).  5 is the provided value- 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+Fp+TN+FN
 () 

Precision: Precision measures how well a model predicts 
positive occurrences relative to all positive occurrences. 
Precision indicates. How good the classifier is in predicting 
the positive classes is expressed as (6)- 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
 () 

Recall: This metric measures the accuracy of positive 
event predictions as a percentage of the total number of 
instances that ought to have been positive.  The formula for it 
in mathematics is (7)- 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃+𝐹𝑁
 () 

F1 score: In other words, it aids in maintaining a healthy 
equilibrium between recall and precision by combining the 
two. Its range is [0, 1]. Mathematically, it is given as (8)-  

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 () 

IV. RESULTS AND DISCUSSION  

This section provides an overview of the experimental 
setup and presents the results of the suggested model's training 
and testing.  Here is the experimental setup used in this article: 
The specifications include Windows 10 OS, NVIDIA RTX 
2080 graphics processing unit, PyTorch machine learning 
framework, Python 3.10, and an experimental environment 
created in PyCharm.  Results from experiments using the 
suggested CNN model for healthcare analytics, including 
brain tumour multimodal images, show exceptional 
performance on all assessment criteria (Table II).  
Impressively, the model was able to minimise false positives, 
as evidenced by its 99% precision and 99.28% accuracy.  
Recalling genuine cases with a sensitivity of 99.67% and an 
F1-score of 99.12% respectively, it shows a good trade-off 
between the two.  The CNN model's reliability and resilience 
in analysing brain tumour multimodal image datasets for 
healthcare applications are demonstrated by these results. 
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TABLE II.   EXPERIMENT RESULTS OF CNN FOR BRAIN TUMOR 

MULTIMODAL IMAGE DATASET 

Performance matrix CNN  

Accuracy 99.28 

Precision 99 

Recall 99.67 

F1-score 99.12 

 

Fig. 5. Accuracy curves for the CNN Model 

Figure 5 shows tendencies in the model's validation and 
training accuracy throughout 50 epochs.   The number of 
epochs is one variable, while the accuracy—which can range 
from 0.4 to 1.0—is another.    The blue line represents 
validation accuracy, which begins at around 0.55 and has early 
variability; the orange line represents training accuracy, which 
begins at about 0.48 and grows with each epoch. Both curves 
show rapid improvement in the first 10–15 epochs. After 
about epoch 20, both training and validation accuracies 
converge and begin to plateau, reaching near-perfect accuracy 
(0.99) by epoch 30 and maintaining stability through epoch 
50.  

 

Fig. 6. Loss curves for the CNN Model 

Figure 6 displays the 50-epoch training and validation loss 
curves.   On one side, we have the number of epochs, and on 
the other, we have the amount of loss, which might range from 
zero to one and a half.  Initially, both the training loss (blue 
line) and the validation loss (orange line) start at levels slightly 
below 1.4. Both curves exhibit a sharp decline during the first 
10 epochs, indicating rapid model learning. The losses 
continue to decrease steadily and begin to plateau after epoch 
20, approaching near-zero values around epoch 40. This close 
alignment, combined with the consistently decreasing trend, 
suggests effective model convergence with minimal 
overfitting or underfitting. The low final loss values indicate 
high model accuracy and stability. 

A. Comparative analysis 

A comparative accuracy examination was carried out 
against other existing models to illustrate the efficacy of the 
suggested CNN model. Table III presents the experimental 

evaluation of the models, demonstrating that traditional deep 
learning architectures and advanced neural networks exhibit 
varying performance levels. ReportGuidedNet achieved an 
accuracy of 70.3%, while the MLP model slightly improved 
the results with 72.69%. A significant jump in performance 
was observed with ResNet18, which reached 96.0% accuracy, 
highlighting the effectiveness of residual connections in 
extracting discriminative features. Among all, the CNN model 
outperformed the others with the highest accuracy of 99.28%, 
indicating its strong capability in handling sequential 
dependencies and delivering superior classification 
performance.  

TABLE III.  ACCURACY COMPARISON OF DIFFERENT  PREDICTIVE 

MODELS, FOR BRAIN IMAGING IN HEALTHCARE 

Models Accuracy 

ReportGuidedNet  [33] 70.3% 

MLP[34] 72.69 

ResNet18[35]   96.00 

CNN 99.28 

The proposed CNN model demonstrates a clear advantage 
by achieving an exceptional accuracy of 99.28%, highlighting 
its superior capability in classifying dementia stages from 
brain tumor imaging data. The extremely high accuracy is an 
indication of the efficiency of this model in understanding 
complex patterns and temporal dependencies, and therefore, 
would be highly dependable in healthcare analytics and 
clinical practice in the real world. 

V. CONCLUSION AND FUTURE STUDY 

Multimodal medical imaging is central in the realm of 
clinical diagnosis and research, since it integrates data of 
multiple imaging modalities into a single, more detailed 
picture of the pathology. Multimodal fusion techniques based 
on the deep learning concept have recently emerged as 
effective ways to enhance medical image classification. This 
review provides an analytical overview of advances in the 
field of multimodal fusion using deep learning approaches to 
medical classification problems. The performance of DL in 
Brain tumour multimodal image Datasets as a healthcare 
analytics tool is evaluated. The CNN model, was found to give 
the best result with a 99.28% accuracy. The conventional 
models, such as MLP and ReportGuidedNet, demonstrated 
relatively smaller accuracies, implying their limited capability 
to learn high-dimensional information of medical images. The 
results overall show that CNN-based models are highly 
effective in predictive healthcare applications involving brain 
imaging, and hold promising potential as to accurately and 
early predict neurological conditions. Future research may 
investigate the transferability of these computational models 
to other medical data sets and assess their distribution in 
clinical conditions. An additional potential direction may be 
investigating encrypted medical images as a further step to 
enforcing privacy and security provisions. 
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