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Abstract—Medical imaging faces several significant challenges, including image segmentation, cross-modal translation, and real-value
prediction. Link CT and MRI scans using a well-liked method. Image quality and diagnostic efficacy can be enhanced with this
technique. One new area of data science is brain imaging genetics, which aims to better understand the brain's normal and abnormal
phenotypic, molecular, and genetic features and how they influence its function and behaviour. Enhancing diagnostic accuracy in
neurological diseases, this work proposes a multimodal approach to analyzing brain tumor imaging data for healthcare analytics. It
leverages modern predictive models. Multiple models were tested using extensive data, such as CNN, Report Guided Net, MLP, and
ResNet18. With an Fl-score of 99.12%, recall of 99.67%, precision of 99%, and accuracy of 99.28%, the Convolutional Neural
Network (CNN) model stood out from the contest. These results prove that deep learning techniques, such as CNNs, can understand
complex multimodal images and extract valuable information from them. The results provide credence to the idea that these models

can be useful in automating the identification of brain disorders by incorporating them into clinical procedures.
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[. INTRODUCTION

Diagnosing diseases is a major obstacle in contemporary
healthcare since prompt treatment interventions are possible
with early and correct detection of pathological conditions,
which in turn minimizes the risks of illness progression and
sequelae. Considering the prevalence and complexity of
conditions such as Alzheimer's, breast cancer, depression,
cardiovascular disease, and epilepsy, this becomes even more
crucial [1]. A brain tumor is a benign, abnormal growth found
in or around the brain. A tumor is an abnormal mass of tissues
that might be solid or filled with fluid. The tumor is formally
called a neoplasm. Worldwide, there are about 18,000,000
new cases of cancer per year, with about 20,000 of those being
brain tumors [2][3]. Most cases (102,260 or 34.4% of the
total) and deaths (77,815 or 32.3% of the total) occurred in
areas with very high human development index (HDI).
Surgical navigation, clinical diagnosis, and radiation surgery
are just a few examples of the numerous medical applications
made possible by medical pictures, which have led to their
extensive use in healthcare systems. This is where MRI and
computed tomography (CT) come in as two of the most
important medical images [4][S]. While magnetic resonance
imaging (MRI) is superior at depicting the finer details of soft
tissues, such as blood vessels, computed tomography (CT)
scans reveal the exact locations of solid structures, including
skeletal tissues. But to get a whole picture of a patient's
condition, it's usually not enough to use just one diagnostic
tool. One potential remedy to this issue is the fusion of CT
and MRI images, which combines the best features of both
imaging modalities [6]. The fusion technique allows for the
efficient merging of CT and MRI images, which enhances the
information and completeness of the merged image [7].
Clinicians can now possess a powerful tool that helps them
attain greater diagnostic precision, assists them in real-world
treatment planning and gauging, and in utilizing the
synergistic combination of structural and soft tissue data.
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Neuro-imaging has become a revolutionary tool of
learning the structure and functioning of the brain and thus
equally provides valuable insight into neurological and
psychiatric disorders [8][9]. sSMRI can be used to examine
cortical thickness, the volume of gray matter, and the presence
of anatomical abnormalities, whereas fMRI can be used to
analyze dynamic brain activity and brain connections, thus
allowing the exploration of functional and anatomical changes
in a number of diseases [10][11][12]. Imaging genomics is the
field that combines neuroimaging with genomic data to study
the genetic, molecular, and phenotypic basis of brain function
and dysfunction [13]. Data analytics methods that can glean
useful insights from high-dimensional datasets are essential
for dealing with the enormous computational and statistical
difficulties posed by multimodal brain imaging data due to its
complexity and size.

Deep learning, machine learning, and Al in general have
emerged as effective tools for tackling these issues in the last
several  years [14][15]. Classification, detection,
segmentation, and registration are just a few of the many
medical imaging tasks for which DL models have shown
outstanding performance, and the literature is full of examples
[16][17]. Most frequent are classification, detection and
segmentation that would allow the characterization of
pathological regions, quantification of structural or functional
abnormalities, and clinical decision support [18][19][20]. Use
of deep learning with multimodal brain imaging data can
combine complementary brain information that sMRI, fMRI
and other brain imaging modalities provide, to increase
diagnostic accuracy, prognosis and clarity of understanding
complex brain conditions[21][22].

A. Motivation and Contribution

The increasing demand for automated diagnostic tools that
are accurate, efficient, and well-suited to neurological
illnesses like dementia is driving this work. Manually
analysing brain tumour imaging data is a time-consuming and,
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frequently, inconsistently accurate method of diagnosis. With
the increasing availability of Brain tumor multimodal image
Datasets, there is a significant opportunity to apply advanced
ML and DL techniques to extract meaningful patterns and
improve diagnostic outcomes. This research is driven by the
potential to leverage these technologies, especially the CNN
model, to enhance early detection, support clinical decision-
making, and ultimately contribute to better patient care and
management. The study below makes a number of important
contributions to the field:

e Developed a robust predictive framework using
Brain tumor multimodal image Datasets for
healthcare analytics.

e Implemented a complete data pipeline including
image  encryption-decryption,  preprocessing,
normalization, and feature extraction.

e Addressed class imbalance issues through data
visualization and analysis of distribution patterns.

e Demonstrated the practical applicability of DL
models in improving diagnostic accuracy in brain
imaging analysis.

e Conceived of a CNN model specifically for the
purpose of using MRI scans of the brain to identify
different stages of dementia.

e Metrics like Fl-score, memory, accuracy, and
precision were used to carefully evaluate the model's
performance.

B. Justification and Novelty

Utilizing brain tumor multimodal image data to aid in
early dementia detection is crucial, and this study is being
conducted because manual interpretation is time-consuming
and not always accurate. A key innovation of the suggested
method involves creating and testing a custom Convolutional
Neural Network (CNN) model that excels with multimodal
brain MRI data, outperforming standard models. Additionally,
the integration of an image encryption-decryption mechanism
ensures data security without compromising diagnostic
quality a crucial aspect in medical imaging. This combination
of high-accuracy classification and secure data handling
represents a novel contribution toward building practical, Al-
driven solutions for healthcare analytics.

C. Structure of the paper

The following is the paper's outline: It examines previous
research and identifies areas where further study is needed in
Section II. Section III details the datasets, preprocessing
methods, and models that were employed. In Section IV, the
results and a critical review are given. Section V presents our
decision and suggestions for further study.

II. LITERATURE REVIEW

A comprehensive literature analysis was conducted to
inform and enhance the creation of this work, which focusses
on healthcare analytics using multimodal brain imaging data.

Wu et al. (2025) Despite CLIP's practical success in the
real world, its medicinal applications remain underexplored.
In order to tackle these obstacles, we explored three possible
directions: 1) present a new CLIP variant that classifies brain
and skin cancers using four convolutional neural networks
(CNNs) and eight vein-invasive tumors (VITs) as image
encoders. 2) To prevent data privacy breaches, integrate 12
deep models with two federated learning techniques. 3) To
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enhance the deep models' ability to generalize to unseen
domain data, employ traditional machine learning (ML)
methods. In the HAMI10000 dataset, maxvit exhibits the
greatest averaged (AVQ) test metrics (AVG = 87.03%) with
multimodal learning, while convnext 1 shows remarkable test
performance with an Fl-score of 83.98% compared to
swin_b's 81.33% in the FL model [23].

Chen et al. (2025) investigate and contrast single-modal
and multimodal breast cancer prediction models using
medical imaging modalities. Using 790 patients' medical
imaging data, including 2,235 mammography images and
1,348 ultrasound images, an ideal model for constructing the
multimodal classification model was identified. Examining
and contrasting six distinct DL classifiers was the subsequent
step.  Several metrics, such as AUC, sensitivity, specificity,
precision, and accuracy, were used to assess the performance
of the multi- and single-modal classification models.
According to the experimental data, the multimodal
classification model achieves higher specificity (96.41% vs.
93.78% vs. 76.27% vs. 91.05% overall) than the single-modal
models [24].

Asish et al. (2024) applied various ML algorithms,
including kNN, RF, 1D-CNN-LSTM, and 2D-CNN, to
classify a group of subjects based on their multi-modal
features and the aspects of their grouping tests, including
cross-subject, cross-session, and gender tests. They found that
the RF classifier achieves the highest accuracy over 83% in
the cross-subject test, around 68% to 78% in the cross-session
test, and around 90% in the gender-based grouping test
compared to other models. The extracted features and their
SHAP analysis showed higher scores of the occipital,
prefrontal areas of the brain, gaze angle, gaze origin, and head
rotation features of the eye tracking [25].

Odusami et al. (2024) The goal is to find out how well
machine learning can correctly group the different stages of
Alzheimer's disease using a mix of neuroimaging data. We
also use the Wilcoxon signed-rank test to statistically assess
the accuracy ratings of the present models. The combined
sensitivity in discriminating between NC and MCI was
83.77% (95% CI: 78.8, 87.7%), between AD and NC 94.60%
(90.8%, 96.9%), and between pMCI and sMCI 80.41%
(74.7%, 85.1%). The sensitivity to differentiate NC and mild
cognitive impairment (MCI) was 83.77% with a 95%
confidence range of 78.87% to 87.71%. A total of 94.60
sensitivity was obtained to differentiate between NC and
Alzheimer disease (AD). Similarly, 86.41% could distinguish
the progressive (pMCI) and stable (sMCI), and 86.63 could
distinguish between NC and early moderate cognitive
impairment (EMCI) (82.4332 89.95) [26].

Jansi et al. (2023) The greatest hindrance to the detection
of brain tumors is its variability in case of location, structure,
and arrangement of the tumor size. Using CNNs, data
augmentation, and picture preparation, this study lays forth a
comprehensive method for detecting brain tumors. This
research makes use of preprocessed, enlarged, and erosion-
enhanced multimodal MRI data from the Brats dataset, which
includes brain tumors. By improving visibility of the tumor
regions, dilation and erosion allow for more precise detection.
The next step is to train a CNN model, prioritizing data
shuffling for greater performance. The TensorFlow and Keras
libraries played a crucial role in constructing the suggested
system. Using the Brain Tumor Brats dataset, the suggested
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framework achieved a respectable detection accuracy of
98.2% in brain tumor identification [27].

Ghosh et al. (2023) GCNN is trained to distinguish
between normal and schizophrenia by analyzing multimodal
human brain connectomes. Specifically, construct structural
connectivity graphs using diffusion tensor imaging data and
functional connectivity graphs using functional magnetic
resonance imaging data to train and evaluate a network.
GCNN method is compared to various popular classification
benchmarks, including one that is based on support vector

machines. results demonstrate that the suggested graph
convolution outperforms the alternatives in terms of F1 scores
(0.75 for schizophrenia classification). A multimodal
approach to diagnosing and predicting the course of mental
illness may be possible using this approach [28].

The table I provides a summary of a few recent studies on
multimodal brain imaging in healthcare analytics, with an
emphasis on models, data used by the studies, the main results,
and reported challenges by the research

TABLE I. OVERVIEW OF RECENT STUDIES ON PREDICTIVE MODELING OF MULTIMODAL BRAIN IMAGING DATA FOR HEALTHCARE ANALYTICS USING DEEP

LEARNING
Author Proposed Work Dataset Key Findings Challenges/recommendations
Wuet al., (2025) | Introduced a novel CLIP variant | HAM10000 dataset | MaxViT achieved highest AVG = | Limited exploration of CLIP in
with CNNs & ViTs for brain and 87.03% (multimodal learning); | medical field; need stronger
skin cancer; combined 12 deep ConvNeXt 1 had best Fl-score | domain generalization &

models with FL; integrated
traditional ML for generalization.

(83.98%) vs Swin_b (81.33%) in
FL.

privacy-preserving methods.

classify distraction states from
multimodal features.

eye tracking

Chen et al, | Models for predicting breast | 790 individuals with | Specificity (96.41%), accuracy | Sensitivity was better in single-
(2025) cancer using single-modal imaging | a total of 2,235 | (93.78%), precision (83.66%), and | modal models;  multimodal
versus ~ multi-modal  imaging | mammography and | area under the curve (0.968) were | models require bigger datasets
(mammography + ultrasound). 1,348  ultrasound | all better for the multimodal model | and modal balancing.
scans than for the single-modal.
Asish et al, | Applied ML methods (kNN, RF, | Multimodal features | RF achieved highest accuracy: | Performance dropped in cross-
(2024) ID-CNN-LSTM, 2D-CNN) to | incl. brain (EEG), | >83% cross-subject, ~68-78% | session tests, indicating a need

cross-session, ~90% gender-based | for robustness across sessions.
grouping. SHAP showed brain
(occipital, prefrontal) & gaze

features were key.

Odusami et al., | Statistical validation with the | Multimodal The pooled sensitivity for MCI | Variability  across  studies;
(2024) Wilcoxon test; a systematic review | neuroimaging compared to NC is 83.77%, for AD | requires  harmonization  of
on ML for Alzheimer's disease | datasets (literature | it is 94.60%, for pMCI it is | datasets & standardized
staging  utilizing  multimodal | review) 80.41%, and for EMCI it is | benchmarks.
neuroimaging. 86.63%. Joint specificity: AD
against NC = 93.49 percent, etc.
Jansi et al, | Brain tumor detection via | Brain Tumor Brats | Achieved  98.2%  accuracy; | Performance dependent on
(2023) preprocessing, augmentation & | dataset preprocessing (dilation, erosion) | preprocessing quality; real-time
CNN on multimodal MRI. improved tumor region visibility. clinical validation required.
Ghosh et al, | Used GCNN to classify | Multimodal GCNN outperformed SVM and | Limited F1-score leaves room for
(2023) schizophrenia from multimodal | connectome  data | benchmarks, achieving the best | improvement; larger sample sizes
brain connectomes (DTI + fMRI). | (DTL fMRI) Fl-score of 0.75. & robust models recommended.

Brain tumor
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v
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1
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Neural Network (CNN) ‘
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Fig. 1. Proposed flowchart for Multimodal Brain Imaging Data for
Healthcare Analytics
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III. RESEARCH METHODOLOGY

The proposed methodology of Focus on Multimodal Brain
Imaging starts with the gathering of the Brain tumor
multimodal image collection. The preprocessing steps
covered data cleansing, elimination of inconsistency and
noise, scaling and min-max normalization and feature
extraction. The data were then partitioned into training and
testing in order to effectively learn and assess the performance
of the training. The last step was to train the proposed CNN
model on the cleaned data. This model excels at managing
time-dependent dependencies and patterns, and it successfully
classified the stages of dementia. The next step was to
evaluate the model's performance using industry-standard
metrics including F1-score, recall, accuracy, and precision.
This would ensure that healthcare analytics produced correct
predictions and classifications. The entire steps involved are
presented in Figure 1.

Each step of the proposed flowchart for using multimodal
brain imaging in healthcare is explained in detail below.
A. Data collection

The dataset includes a variety of medical pictures,
including MRI and CT scans, which are used for the detection
and study of brain tumors. Brain tumors cause a wide variety
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of structural and functional alterations, and the combined
pictures from the two modalities reveal a great deal about
these changes. Each image in the collection is anatomically
labelled with the type of tumor (e.g., glioma, meningioma,
etc.) and its location in the brain. The dataset consists of high-
resolution CT and MRI scans taken from various individuals.
For the experiment, they manipulated 50 sets of greyscale
images and 256x256 scaled images from CT and MRI scans.
One example is the test set shown in Figure 2, which consists
of 50 image pairs. Data visualizations such as bar plots were
used to examine data distribution, feature correlations etc., are
given below:

Fig. 2. Fifteen pairs of CT-MRI images for evaluation. In each pair, the
left is the CT image, and the right is the MRI image

Fig. 3. MRIand CT Brain of size 256 x 256 pixels and its fused images. (a)
Input-MRI image. (b) Input-CT image. (¢) Fused MRI-CT image

Figure 3 illustrates brain imaging using MRI and CT
modalities along with their fused counterparts, each resized to
256 x 256 pixels. Column (a) shows the input MRI images,
which provide detailed soft tissue contrast useful for
visualizing brain structures and abnormalities. Column (b)
presents the corresponding CT images, which highlight bone
structures and calcifications with high spatial resolution.
Column (c) depicts the fused MRI-CT images, where
information from both modalities is integrated, enhancing
diagnostic interpretation by combining the anatomical clarity
of CT with the soft tissue detail of MRI. This fusion facilitates
comprehensive analysis for improved medical decision-
making.

Figure 4 the image sequence demonstrates the process of
image encryption and decryption applied to a brain CT and
MRI scans. The first panel shows the original image, clearly
depicting the structural details of the brain. The middle panel
presents the encrypted image, where the original features are
completely obscured, ensuring data confidentiality and
protection against unauthorized access. The final panel
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displays the decrypted image, which accurately reconstructs
the original scan, preserving the anatomical integrity. This
figure illustrates the effective use of the encryption-decryption
method to secure important medical imaging information
without degrading image quality.

Ongas! bage

0 X & 0 2 10 1N

Fig. 4. Encryption and decryption of images

B. Data pre-processing

Data preparation included the organization of brain tumor
multimodal images, combining their data and cleansing to
maintain similarity. Relevant characterics were then
discovered that were to facilitate handy analysis. Any form of
data was pre-processed to eliminate noise and inconsistency
to ensure quality of data. Model training was based on the
standardization of the data through normalization and data
transformation in this phase. The key features of the pre-
processing step are listed below:

e Data exploration. The dataset sample size, the
distribution of features, and analysis add some
insights into the inner nature of the dataset and
establish a good basis to choose preprocessing
techniques.

e Remove inconsistencies in the data: To avoid the
lack of consistency, focus on correcting errors,
standardizing the formats, and enforcing data
governance. This involves data validation, data
cleaning, data transformation and so on.

e Remove Noise: The Gaussian blur filter was used to
remove noise in photos and to enhance the output of
a better quality. This kind of filtering actually
lightens up the picture and dims down notable detail.
Images adjusted with high-pass filter to sharpen
image and complex features are retrieved. This filter
makes edges and smaller details sharper and enables
easier discernment of the significant details in an
image.

C. Min-Max Normalization

The data were put in normalized form by applying the min-
max method of keeping values within a range between 0 and
1. The aim of such an action was to get the classifiers to
perform better and to reduce the influence of outliers. In order
to standardise, the following formula was used (1):

Xr — X— Xmin (1)
Xmax—Xmin

X indicates the initial feature value, X' stands for the

normalized value, X,,,;, denotes the feature's minimum, and

X nax denotes its maximum.

D. Feature Extraction

The feature extraction technique was binary thresholding.
In this approach, images in grey scale can be represented in
binary form (with the foreground pixels assigned to white and
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the background pixels in black) given a hackneyed size set by
auser. This aids the model in differentiating between tumor
kinds and healthy parts by drawing attention to the object's
outline, in this case the tumor regions [29]. Employed contour
detection algorithms to determine the largest contour in each
image- the tumor region- through thresholding, and then
cropped the image to highlight that location within the region
of interest (ROI) [30]. Due to this, there is the model capable
of concentrating on the essential sections of the picture
without the need to incorporate excessive background. In the
case of input size homogeneity, generated photos were
trimmed and reduced to a normalized size of 256 X 256 pixels.

E. Data Splitting

Training and testing sets were split so that we could assess
the performance of the model. 70 % of the data was used to
train the model and calculate model parameters. The
remaining 30% was not dedicated to training purposes but
reserved to test the model performance and estimation of
parameters.

F. Proposed Recurrent Neural Network (CNN) model

Deep learning has greatly changed the rate at which the
doctors will be able to diagnose diseases in an accurate and
efficient manner by improving the processing of images using
CNNs. CNNs have helped tremendously in medical image
processing and diagnosis [31]. The several tests that have
been done on CNNs include but are not limited to object
segmentation, object detection, and image categorizing which
have been reported that CNNs are better than conventional
CAD systems. A major advantage compared to more
traditional machine learning techniques is that CNNss can learn
complex picture features without the need to engineer feature
extraction, which requires the assistance of a human being.
CNNs have been applied in several diagnostic imaging
modalities in the field of medicine such as in MRI and CT.
With the adaptive use of CNNs, radiologists and doctors can
make more accurate and expedited diagnoses since the
accuracy levels of these variables are impressive when used to
interpret medical images. In order to learn features,
convolutional neural networks (CNNs) use a multi-layered
architecture that incorporates non-linear transformations. The
input data is displayed at the visible layer as a tensor, which is
a multidimensional data array. Examples of this type of
topology include time-series data, which is essentially a 1D
grid sampling at regular intervals, 2D picture pixels, 3D video
structure, etc. The next step involves extracting multiple
abstract characteristics through a series of hidden layers. For
example, using equation (2), a two-dimensional kernel h can
calculate the 2D convolution given an input x that is two
dimensions in size:

(x * )i, j = x[i,j] * h[i,j]1 = ¥n¥mx[n,m] - h[i —n][j -
m] 2

their individual weights multiplied with regard to a small
input area to which they are linked.

A feature map is created at the filter's output by including
a bias term and applying a point-wise nonlinearity g following
the convolution. The filters are defined by the input x, the
bias bl, and the coefficients or weights, given a convolutional
layer and a 1-th feature map h'. Equation (3) can be used to
obtain the feature map h! from W*.:

hLl',j =gW'« xX)ij + by 3)
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where g () is the activation function and * is the 2D
convolution defined by Equation (3).

Deep neural networks often use the rectifier activation
function, which is defined as

g(x) = x* =max(0,x) @)

G. Evaluation metrics

TP, FP, TN, and FN are the four classifications used in Al
diagnostic tasks. It is common practice to compute
performance evaluation measures for binary classification
tasks using the confusion matrix. Positive cases, or the
positive class that was accurately classified as positive, are
represented by TP [32]. A negative instance is represented by
TN if and only if the negative class was accurately identified
as negative. The term "false positive" (FP) describes cases
where the negative class was mistakenly classified as positive.
When members of the positive class are mistakenly classified
as negative, this is known as a false negative (FN). Important
evaluation measures such as recall, accuracy, precision, and
F1-score were calculated using these data, as displayed in the
matrix below:

Accuracy: A metric that compares the trained model's
output predictions to those of the entire dataset (input
samples). 5 is the provided value-

TP+TN

Accuracy = ——
Y TP+Fp+TN+FN

&)

Precision: Precision measures how well a model predicts
positive occurrences relative to all positive occurrences.
Precision indicates. How good the classifier is in predicting
the positive classes is expressed as (6)-

TP
TP+FP

Precision = ©)

Recall: This metric measures the accuracy of positive
event predictions as a percentage of the total number of
instances that ought to have been positive. The formula for it
in mathematics is (7)-

Recall = ——— 7

TP+FN

F1 score: In other words, it aids in maintaining a healthy
equilibrium between recall and precision by combining the
two. Its range is [0, 1]. Mathematically, it is given as (8)-

PrecisionxRecall
F1—score =2 X ——— ()

Precision+Recall

IV. RESULTS AND DISCUSSION

This section provides an overview of the experimental
setup and presents the results of the suggested model's training
and testing. Here is the experimental setup used in this article:
The specifications include Windows 10 OS, NVIDIA RTX
2080 graphics processing unit, PyTorch machine learning
framework, Python 3.10, and an experimental environment
created in PyCharm. Results from experiments using the
suggested CNN model for healthcare analytics, including
brain tumour multimodal images, show exceptional
performance on all assessment criteria (Table II).
Impressively, the model was able to minimise false positives,
as evidenced by its 99% precision and 99.28% accuracy.
Recalling genuine cases with a sensitivity of 99.67% and an
Fl-score of 99.12% respectively, it shows a good trade-off
between the two. The CNN model's reliability and resilience
in analysing brain tumour multimodal image datasets for
healthcare applications are demonstrated by these results.
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TABLE II. EXPERIMENT RESULTS OF CNN FOR BRAIN TUMOR
MULTIMODAL IMAGE DATASET
Performance matrix CNN
Accuracy 99.28
Precision 99
Recall 99.67
Fl-score 99.12
1
0.t ,
— T raining Accumey
Validation Accuracy
0.4
é.
ch
-
0.6
0.5
0.4 1 i A
0 10 ) o 10 W
Epoch

Fig. 5. Accuracy curves for the CNN Model

Figure 5 shows tendencies in the model's validation and
training accuracy throughout 50 epochs. The number of
epochs is one variable, while the accuracy—which can range
from 0.4 to 1.0—is another. The blue line represents
validation accuracy, which begins at around 0.55 and has early
variability; the orange line represents training accuracy, which
begins at about 0.48 and grows with each epoch. Both curves
show rapid improvement in the first 1015 epochs. After
about epoch 20, both training and validation accuracies
converge and begin to plateau, reaching near-perfect accuracy
(0.99) by epoch 30 and maintaining stability through epoch
50.

'— Training loss

Validation lass

Epoch

Fig. 6. Loss curves for the CNN Model

Figure 6 displays the 50-epoch training and validation loss
curves. On one side, we have the number of epochs, and on
the other, we have the amount of loss, which might range from
zero to one and a half. Initially, both the training loss (blue
line) and the validation loss (orange line) start at levels slightly
below 1.4. Both curves exhibit a sharp decline during the first
10 epochs, indicating rapid model learning. The losses
continue to decrease steadily and begin to plateau after epoch
20, approaching near-zero values around epoch 40. This close
alignment, combined with the consistently decreasing trend,
suggests effective model convergence with minimal
overfitting or underfitting. The low final loss values indicate
high model accuracy and stability.

A. Comparative analysis

A comparative accuracy examination was carried out
against other existing models to illustrate the efficacy of the
suggested CNN model. Table III presents the experimental
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evaluation of the models, demonstrating that traditional deep
learning architectures and advanced neural networks exhibit
varying performance levels. ReportGuidedNet achieved an
accuracy of 70.3%, while the MLP model slightly improved
the results with 72.69%. A significant jump in performance
was observed with ResNet18, which reached 96.0% accuracy,
highlighting the effectiveness of residual connections in
extracting discriminative features. Among all, the CNN model
outperformed the others with the highest accuracy of 99.28%,
indicating its strong capability in handling sequential

dependencies and delivering superior classification
performance.
TABLE 111 ACCURACY COMPARISON OF DIFFERENT PREDICTIVE
MODELS, FOR BRAIN IMAGING IN HEALTHCARE
Models Accuracy
ReportGuidedNet [33] 70.3%
MLP[34] 72.69
ResNet18[35] 96.00
CNN 99.28

The proposed CNN model demonstrates a clear advantage
by achieving an exceptional accuracy of 99.28%, highlighting
its superior capability in classifying dementia stages from
brain tumor imaging data. The extremely high accuracy is an
indication of the efficiency of this model in understanding
complex patterns and temporal dependencies, and therefore,
would be highly dependable in healthcare analytics and
clinical practice in the real world.

V. CONCLUSION AND FUTURE STUDY

Multimodal medical imaging is central in the realm of
clinical diagnosis and research, since it integrates data of
multiple imaging modalities into a single, more detailed
picture of the pathology. Multimodal fusion techniques based
on the deep learning concept have recently emerged as
effective ways to enhance medical image classification. This
review provides an analytical overview of advances in the
field of multimodal fusion using deep learning approaches to
medical classification problems. The performance of DL in
Brain tumour multimodal image Datasets as a healthcare
analytics tool is evaluated. The CNN model, was found to give
the best result with a 99.28% accuracy. The conventional
models, such as MLP and ReportGuidedNet, demonstrated
relatively smaller accuracies, implying their limited capability
to learn high-dimensional information of medical images. The
results overall show that CNN-based models are highly
effective in predictive healthcare applications involving brain
imaging, and hold promising potential as to accurately and
early predict neurological conditions. Future research may
investigate the transferability of these computational models
to other medical data sets and assess their distribution in
clinical conditions. An additional potential direction may be
investigating encrypted medical images as a further step to
enforcing privacy and security provisions.

REFERENCES

[1] S. Anto, “Supervised Machine Learning Approaches for Medical
Data Set Classification - A Review,” Int. J. Comput. Sci. Technol.,
vol. 2, no. 4, pp. 234-240, 2011, [Online]. Available:
http://www.ijcst.com/vol24/2/santo.pdf

[2] M. A. Mostafiz, “Machine Leaming for Early Cancer Detection
and Classification: Al- Based Medical Imaging Analysis in
Healthcare,” Int. J. Curr. Eng. Technol., vol. 15, no. 3, pp. 251—
260, 2025, doi: https://doi.org/10.14741/ijcet/v.15.3.7.

[3] R. P. Mahajan, “Transfer Learning for MRI image reconstruction:
Enhancing model performance with pretrained networks,” Int. J.

13



[10]

[11]

[12]

[13]

[15]

[16]

[17]

(18]

[19]

V. Sharma, Journal of Global Research in Multidisciplinary Studies (JGRMS, 1 (10), October 2025, 8-14)

Sci. Res. Arch., vol. 15, no. 1, pp. 298-309, Apr. 2025, doi:
10.30574/ijsra.2025.15.1.0939.

Q. Mao, W. Zhai, X. Lei, Z. Wang, and Y. Liang, “CT and MRI
Image Fusion via Coupled Feature-Learning GAN,” Electronics,
vol. 13, no. 17, p. 3491, Sep. 2024, doi:
10.3390/electronics13173491.

S. S. S. Neeli, “Key Challenges and Strategies in Managing
Databases for Data Science and Machine Learning,” Int. J. Lead.
Res. Publ., vol. 2, no. 3, pp. 1-9, 2021, doi:
https://doi.org/10.5281/zenodo.14672937.

S. R. Sagili, S. B, P. RVS, and A. P, “Sentiment Classification for
Depression Detection: Integrating Capsule Networks with CNNs
on Review Data,” in 2025 Emerging Technologies for Intelligent
Systems (ETIS), 2025, Pp- 1-7. doi:
10.1109/ETIS64005.2025.10961685.

R. Dattangire, D. Biradar, and A. Joon, “Al-Enhanced U-Net for
Accurate Low-Grade Glioma Segmentation in Brain MRI:
Transforming Healthcare Imaging,” in 2024 3rd International
Conference on Electrical, Electronics, Information and
Communication Technologies, ICEEICT 2024, 2024, pp. 1-6. doi:
10.1109/ICEEICT61591.2024.10718440.

K. M. Kuntzelman, J. M. Williams, P. C. Lim, A. Samal, P. K.
Rao, and M. R. Johnson, “Deep-Learning-Based Multivariate
Pattern Analysis (AIMVPA): A Tutorial and a Toolbox,” Front.
Hum. Neurosci., vol. 15, pp. 1-18, Mar. 2021, doi:
10.3389/fnhum.2021.638052.

S. Pandya, “Integrating Smart IoT and Al-Enhanced Systems for
Predictive Diagnostics Disease in Healthcare,” Int. J. Sci. Res.
Comput. Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 2093-2105,
Dec. 2023, doi: 10.32628/CSEIT2410612406.

M. W. Weiner et al., “Recent publications from the Alzheimer’s
Disease Neuroimaging Initiative: Reviewing progress toward
improved AD clinical trials,” 2017. doi:
10.1016/j.jalz.2016.11.007.

P. M. Thompson et al., “ENIGMA and global neuroscience: A
decade of large-scale studies of the brain in health and disease
across more than 40 countries,” 2020. doi: 10.1038/s41398-020-
0705-1.

R. P. Mahajan, “Optimizing Pneumonia Identification in Chest X-
Rays Using Deep Learning Pre-Trained Architecture for Image
Reconstruction in Medical Imaging,” Int. J. Adv. Res. Sci.
Commun. Technol., vol. 5, no. 1, pp. 52-63, Apr. 2025, doi:
10.48175/ijarsct-24808.

N. Patel, “Quantum Cryptography In Healthcare Information
Systems: Enhancing Security In Medical Data Storage And
Communication,” J. Emerg. Technol. Innov. Res., vol. 9, no. 8, pp.
g193-g202, 2022.

L. Shen and P. M. Thompson, “Brain Imaging Genomics:
Integrated Analysis and Machine Learning,” Proc. IEEE, vol. 108,
no. 1, pp. 125-162, 2020, doi: 10.1109/JPROC.2019.2947272.

R. Q. Majumder, “Machine Learning for Predictive Analytics:
Trends and Future Directions,” Int. J. Innov. Sci. Res. Technol.,
vol. 10, no. 04, pp. 3557-3564, 2025.

S. R. Sagili, S. Chidambaranathan, N. Nallametti, H. M. Bodele,
L. Raja, and P. G. Gayathri, “NeuroPCA: Enhancing Alzheimer’s
disorder Disease Detection through Optimized Feature Reduction
and Machine Learning,” in 2024 Third International Conference
on Electrical, Electronics, Information and Communication
Technologies (ICEEICT), 1EEE, Jul. 2024, pp. 1-9. doi:
10.1109/ICEEICT61591.2024.10718628.

R. Dattangire, R. Vaidya, D. Biradar, and A. Joon, “Exploring the
Tangible Impact of Artificial Intelligence and Machine Learning:
Bridging the Gap between Hype and Reality,” in 2024 Ist
International Conference on Advanced Computing and Emerging
Technologies (ACET), 1EEE, Aug. 2024, pp. 1-6. doi:
10.1109/ACET61898.2024.10730334.

H. T. Shen et al., “Heterogeneous data fusion for predicting mild
cognitive impairment conversion,” Inf. Fusion, vol. 66, pp. 54-63,
2021, doi: 10.1016/j.inffus.2020.08.023.

Y. Zhu, M. Kim, X. Zhu, D. Kaufer, and G. Wu, “Long range early

© JGRMS 2025, All Rights Reserved

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

diagnosis of Alzheimer’s disease using longitudinal MR imaging
data,” Med. Image Anal., vol. 67, pp. 1-12, 2021, doi:
10.1016/j.media.2020.101825.

S. P. Kalava, “The Role of Al in Reinventing Hospitality Safety
Measures After COVID-19,” Sci. Res. Community, no. 2754—
6659, p. 3,2024.

X. Zhu et al., “Joint prediction and time estimation of COVID-19
developing severe symptoms using chest CT scan,” Med. Image
Anal., 2021, doi: 10.1016/j.media.2020.101824.

E. Sugawara and H. Nikaido, “Properties of AdeABC and AdelJK
efflux systems of Acinetobacter baumannii compared with those
of the AcrAB-TolC system of Escherichia coli,” Antimicrob.
Agents Chemother., vol. 58, no. 12, pp. 7250-7257, 2014, doi:
10.1128/AAC.03728-14.

Y. Wu, M. Owais, R. Kateb, and A. Chaddad, “Deep Modeling
and Optimization of Medical Image Classification,” in 2025 IEEE
22nd International Symposium on Biomedical Imaging (ISBI),
IEEE, Apr. 2025, pp- 1-4. doi:
10.1109/1SB160581.2025.10981184.

J. Chen et al., “A deep learning-based multimodal medical
imaging model for breast cancer screening,” Sci. Rep., vol. 15, no.
1, pp. 1-13, 2025, doi: 10.1038/s41598-025-99535-2.

S. M. Asish, A. K. Kulshreshth, C. W. Borst, and S. Sutradhar,
“Classification of Internal and External Distractions in an
Educational VR Environment Using Multimodal Features,” IEEE
Trans. Vis. Comput. Graph., vol. 30, no. 11, pp. 7332-7342, 2024,
doi: 10.1109/TVCG.2024.3456207.

M. Odusami, R. Maskelitinas, R. Damasevi¢ius, and S. Misra,
“Machine learning with multimodal neuroimaging data to classify
stages of Alzheimer’s disease: a systematic review and meta-
analysis,” 2024. doi: 10.1007/s11571-023-09993-5.

R. Jansi, S. Kowsalya, S. Seetha, and A. Yogadharshini, “A Deep
Learning based Brain Tumour Detection using Multimodal MRI
Images,” in 2nd International Conference on Automation,
Computing and Renewable Systems, ICACRS 2023 - Proceedings,
2023, pp. 582-587. doi: 10.1109/ICACRS58579.2023.10404952.

S. Ghosh, E. Bhargava, C.-T. Lin, and S. S. Nagarajan, “Graph
Convolutional Learning of Multimodal Brain Connectome Data
for Schizophrenia Classification,” in 2023 I[EEE 20th International
Symposium on Biomedical Imaging (ISBI), IEEE, Apr. 2023, pp.
1-5. doi: 10.1109/ISB153787.2023.10230441.

R. Disci, F. Gurcan, and A. Soylu, “Advanced Brain Tumor
Classification in MR Images Using Transfer Learning and Pre-
Trained Deep CNN Models,” Cancers (Basel)., vol. 17, no. 1, p.
121, Jan. 2025, doi: 10.3390/cancers17010121.

S. Pandya, “Predictive Modeling for Cancer Detection Based on
Machine Learning Algorithms and Al in the Healthcare Sector,”
Int. Res. J., vol. 11, no. 12, pp. 549-555, 2024.

A. M. Al-Zoghby, A. Ismail Ebada, A. S. Saleh, M. Abdelhay, and
W. A. Awad, “A Comprehensive Review of Multimodal Deep
Learning for Enhanced Medical Diagnostics,” Comput. Mater.
Contin., vol. 84, mno. 3, pp. 4155-4193, 2025, doi:
10.32604/cmc.2025.065571.

X. Xu et al., “A Comprehensive Review on Synergy of Multi-
Modal Data and AI Technologies in Medical Diagnosis,”
Bioengineering, vol. 11, no. 3, pp. 1-51, 2024, doi:
10.3390/bioengineering11030219.

L. Dai et al., “Boosting Deep Learning for Interpretable Brain MRI
Lesion Detection through the Integration of Radiology Report
Information,” Radiol. Artif. Intell., vol. 6, no. 6, 2024, doi:
10.1148/ryai.230520.

L. Cai et al., “MM-GTUNets: Unified Multi-Modal Graph Deep
Learning for Brain Disorders Prediction,” IEEE Trans. Med.
Imaging, vol. 44, no. 9, pp. 3705-3716, 2025, doi:
10.1109/TM1.2025.3556420.

C. Macfadyen, A. Duraiswamy, and D. Harris-Birtill,
“Classification of hyper-scale multimodal imaging datasets,”
PLOS Digit. Heal., vol. 2, no. 12, pp. 1-15, 2023, doi:
10.1371/journal.pdig.0000191.

14



