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Abstract—Improving the effectiveness of deep learning (DL) for image classification on large datasets requires not only data 

preprocessing but also the right network designs. In this research, a new image classification system is introduced, which applies a 

modified Inception model to a subset of the ImageNet dataset containing 10 classes. Preparation of the data includes cleaning, 

augmentation, normalization, and feature extraction. These activities not only preserve the quality of data but also provide efficient 

input to the model. The modified Inception architectural changes enhance the original Inception network idea, thus increasing the 

power of the network for feature extraction and data classification. To evaluate the results, besides the modified Inception model, 

several well-known DL architectures like DenseNet, ResNet50, and VGG16 have been employed and compared using common 

performance metrics. The modified Inception model achieves better performance in the classification tasks than the baseline models. 

The accuracy is at 98.7%, the precision at 98.5%, the recall at 99%, and the F1-score at 98.6%. The results reported here have 

highlighted the role of architectural modifications and the impact of the thorough preprocessing pipeline in boosting the performance 

of image classification tasks on large datasets. Such a system offers a viable means to address challenging visual recognition problems. 

Keywords—Deep Learning, Automated Optimization, Automated Machine Learning, Parameter Optimization, Sequential-Model-Based 

Optimization, Image Classification. 

I. INTRODUCTION 

In various fields like medical imaging, remote sensing, 
surveillance, and industrial automation, a large number of 
images are available. Sorting and viewing these images 
quickly and efficiently becomes very important in such 
cases[1][2]. Images are very significant for computer vision 
systems nowadays. The system's capability to recognize and 
understand these images is dependent on their quality. 
However, real-world image data are usually accompanied by 
noise, blur, fluctuating illumination, and different quality 
levels. These issues can make it difficult for the models to 
learn. Hence, it is very important to make sure that the images 
are clear and similar when you train the model. This step is 
very important for the development of image-based 
intelligence systems that are able to work properly. 
Nevertheless, these databases usually have raw, unstructured, 
and mixed image data in them[3]. This facilitates having a 
large number of images for training and ensures that models 
work efficiently. 

Automated preprocessing pipelines have the ability to 
eliminate noise, normalize data, scale numbers, and adjust 
colors without the intervention of humans[4][5][6]. Adaptive 
algorithms modify how these systems examine images before 
sending them to the computer, depending on what they are. It 
thus makes things more efficient and stable. They can, by the 
use of these methods, very quickly prepare a huge number of 
images for the following stages[7][8]. Such pipelines often 
perform operations like noise reduction, normalization, 
scaling, augmentation, and feature enhancement. These 
techniques turn huge mixed image sets into manageable ones 

which would be unfeasible to handle by hand[9]. The 
existence of these types of pipelines is very essential not only 
for the improvement of models but also in areas like medicine, 
remote sensing, and computer vision. 

Semantic segmentation is one of the core components of 
computer vision.  It is used in various ways such as analysing 
remote sensing images, examining medical tissues, and 
powering self-driving cars[10]. Deep learning (DL) has totally 
changed the methods of automatic image processing.  It allows 
the usage of data-driven, adaptable, and scalable methods. 
There are multiple deep architectures in the form of 
Convolutional Neural Networks (CNNs), Autoencoders, and 
Generative Adversarial Networks (GANs).  They can capture 
complex changes that make the visual input more realistic, 
extend it, and compress it. These models take the automation 
route for the most essential processes from the image domain, 
like feature extraction, enhancement, and dimensionality 
reduction.  The result is a set of high-quality, standardized 
inputs that can be further used for more 
processing[11][12][13]. To take one instance, image 
classification can only be improved by the use of class 
activation maps and gradient analysis. 

A. Motivation and Contribution 

This work was mainly because DL systems need to 
quickly process and analyses huge volumes of image data.   
When you manually pre-process such massive datasets, it 
takes a long time, is simple to make mistakes, and is typically 
not consistent, which might make the model work worse.   
This project aims to facilitate data cleaning, augmentation, 
normalization, and feature extraction through the 
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development of an automated image preparation process.  
This guarantees that DL models receive standardized, high-
quality input. This method is quite useful in the actual world, 
because there is often a lot of high-dimensional image data 
accessible. It improves models, making them more powerful, 
and their ability to distinguish different things gets better. In 
addition, the load that people and machines have to share is 
lightened. This research has brought in a variety of significant 
contributions that are elaborated in detail below: 

• Tested the process on a smaller version of the 
ImageNet dataset with 10 classes. This helped us 
evaluate its effectiveness. The results showed that it 
can manage complex, real-world images. 

• Cleaned data to fix missing values, remove duplicates 
and corrupted images, and lower noise. 

• Used data augmentation and normalization to increase 
dataset variety and standardize input values for better 
model performance. 

• Conducted feature extraction to transform raw images 
into meaningful, compact representations, reducing 
computational complexity and enhancing model 
efficiency. 

• Designed an Inception-based model tailored for large-
scale image classification to effectively learn and 
extract hierarchical features from preprocessed data. 

• Assessed evaluating the model's overall performance 
using measures such as F1-score, recall, accuracy, and 
precision. 

B. Organization of the Paper 

The paper is structured as follows: Section II reviews the 
related work on image preprocessing pipelines, Section III 
describes the dataset, preprocessing steps, and model 
implementation, Section IV presents the experimental results 
with comparative analysis, and Section V concludes the study 
by highlighting important discoveries and suggesting avenues 
for further study.  

II. LITERATURE REVIEW  

A comprehensive review of existing research on image 
preprocessing pipelines was conducted to support this study. 
Table I summarizes recent works, outlining the proposed 
models, datasets, key outcomes, and identified challenges. 

Kumar, Singh and Kumar Dewangan (2025) introduces a 
novel convolutional neural network (CNN) architecture 
tailored for cactus identification from aerial photographs. The 
proposed cloud-based pipeline enhances training efficiency 
through scalable data storage, preprocessing, and distributed 
training across platforms such as Amazon Web Services 
(AWS), Google Cloud Platform (GCP), and Microsoft Azure. 
the model’s computational efficiency, shorter training 
durations, and cost-effectiveness. The model integrates 
residual connections and depth wise separable convolutions, 
achieving 96.7% accuracy on the aerial cactus identification 
dataset. The results highlight the model’s high performance, 
cost-efficiency, and scalability, making it suitable for real-
world aerial image classification tasks[14]. 

S and C (2025) a comprehensive analysis of various 
preprocessing techniques for chromosome metaphase image 
detection using DL models. Through extensive 
experimentation, the combination of CLAHE, Gamma 
Correction, and Median Filtering is shown to outperform other 
preprocessing methods based on both subjective and objective 

evaluation metrics. The proposed method achieves 
exceptional results with an MSE of 3.49, a PSNR of 32.02, an 
SSIM of 0.99, an Entropy of 4.32, and an Edge Density of 
0.03. Moreover, post-detection accuracy is significantly 
improved, increasing from 73% to 95% when the proposed 
preprocessing approach is applied before the detection 
task[15].  

Tariku et al. (2024), A multi-step pipeline that includes 
Enhanced Super-Resolution Generative Adversarial 
Networks (ESRGAN) for resolution augmentation, Contrast-
Limited Adaptive Histogram Equalisation (CLAHE) for 
Image quality is enhanced by contrast enhancement and white 
balance tweaks for correct colour representation.   These 
preprocessing methods guarantee high-quality input data, 
which enhances model performance.   A remarkable 97.88% 
accuracy rate was attained by the VGG-16 + SVM model for 
feature extraction and classification on a dataset[16]. 

Kussul et al. (2024) provides a new way to preprocess 
Synthetic Aperture Radar (SAR) satellite images to make it 
easier to find oil spills using DL models. A transfer learning 
approach with the LinkNet segmentation architecture pre-
trained on ImageNet is employed. The model is trained on 
Sentinel-1 SAR data from 2018–2023 using a designed 
preprocessing pipeline that converts the single-channel SAR 
input to a 3-channel RGB image transforming the original 
SAR intensity values to a normal distribution, extracting 
nonlinear features, and encoding them into the RGB channels. 
Quantitative results on a test set show the preprocessed model 
achieves an improvement of 0.038 in F1-score and 0.054 in 
Intersection [17]. 

Sun et al. (2023) employing a multi-layer convolutional 
network to extract the feature information of grape leaves, 
decreasing model overfitting by adding a data augmentation 
layer, avoiding aliasing in the gradient direction by using the 
Leaky Relu activation function, and adding a flat layer  By 
"flattening" convolutional pooling data and one-dimensional 
multi-dimensional data, the Adam optimizer can increase 
network efficiency, enhance sparse gradient performance, and 
shorten training times.  The convolutional neural network 
CNN-GLS model has a 95.13% accuracy rate in identifying 
tiny samples of grape leaves, according to the experimental 
data. The model is resilient and has a high capacity for 
generalization, which is crucial for plant taxonomic 
identification[18]. 

Yang et al. (2022) proposes YOLO-Xweld, a 
revolutionary approach that uses the properties of pipeline 
weld X-ray images to weaken large-scale network detection 
branches and identify pipeline welding flaws for limited 
application situations.  In order to create a lightweight model 
and lessen reliance on high-performance hardware, Depthwise 
separable convolution is implemented.  Experiments reveal 
that the model's size has decreased and the floating-point 
operations and parameter counts have dropped by almost 
70%.  In the limited pipeline weld detection context, this is 
crucial for decreasing reliance on high-performance hardware 
and improving operability and ease during inspections[19]. 

Sarkar et al. (2022) emphasize melanoma detection in 
either dermoscopic or non-dermoscopic images, but not both, 
and offer a unique generalized framework that can identify 
melanoma in both images.  A VGG-16 model is followed by 
a preprocessing pipeline, data augmentation, and class 
imbalance resolution.  The sensitivity of the model is 87% on 
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non-dermoscopic images and 91% on dermoscopic images 
(for melanoma patients)[20]. 

TABLE I.  RECENT STUDIES ON IMAGE PREPROCESSING PIPELINES USING DEEP LEARNING  

Author & Year Dataset  Methodology Key Findings Limitations / Future Work 

Kumar, Singh & 
Dewangan 

(2025) 

Aerial Cactus 
Identification 

Dataset 

Proposed a novel CNN architecture with 
residual connections and depthwise 

separable convolutions integrated into a 

cloud-based pipeline (AWS, GCP, Azure) 
for scalable training and preprocessing. 

Achieved 96.7% accuracy; 
demonstrated high computational 

efficiency, shorter training times, 

and cost-effectiveness for aerial 
image classification. 

Future work may focus on 
optimizing cross-cloud resource 

allocation and extending model 

adaptability to other remote-
sensing datasets. 

S. & C. (2025) Chromosome 

Metaphase 

Image Dataset 

Combined CLAHE, Gamma Correction, 

and Median Filtering as preprocessing 

techniques before deep learning-based 
detection. 

Improved detection accuracy from 

73% to 95%, with performance 

metrics: MSE=3.49, PSNR=32.02, 
SSIM=0.99, Entropy=4.32, Edge 

Density=0.03. 

Requires validation on larger, 

more diverse chromosome 

datasets; computational 
complexity of combined 

preprocessing may be 
optimized. 

Tariku et al. 

(2024) 
Custom Image 

Dataset 
Multi-step preprocessing using ESRGAN 

for super-resolution, CLAHE for contrast, 

and white balance adjustment; 
classification with VGG-16 + SVM. 

Achieved 97.88% accuracy; 

significantly enhanced image 

quality and feature extraction 
effectiveness. 

Future work could integrate 

real-time preprocessing and 

compare with newer hybrid 
CNN architectures. 

Kussul et al. 

(2024) 
Sentinel-1 SAR 

Satellite 
Imagery (2018–

2023) 

Proposed preprocessing converting 

single-channel SAR to 3-channel RGB 
via transformation and feature encoding; 

LinkNet with transfer learning on 

ImageNet. 

Improved F1-score by 0.038 and 

IoU by 0.054 for oil spill detection; 
enhanced SAR interpretability. 

Model performance needs 

validation on other satellite 
sensors; future work may 

explore real-time detection and 

multi-temporal analysis. 
Sun et al. (2023) Grape Leaf 

Image Dataset 
Developed CNN-GLS model with data 
augmentation layer, Leaky ReLU 

activation, Flatten layer, and Adam 

optimizer for efficient training. 

Achieved 95.13% accuracy with 
strong robustness and 

generalization in small-sample 

grape leaf species recognition. 

May extend to larger 
agricultural datasets and 

incorporate transfer learning for 

improved scalability. 
Yang et al. 

(2022) 
Pipeline Weld 

X-ray Image 

Dataset 

Proposed YOLO-Xweld with depthwise 

separable convolution to detect weld 

defects; optimized for lightweight 
operation and reduced computation. 

Reduced model parameters and 

FLOPs by over 70%, maintaining 

high accuracy; suitable for 
resource-constrained 

environments. 

Future work includes real-time 

deployment and further 

miniaturization for embedded 
systems. 

Sarkar et al. 

(2022) 
Dermoscopic & 

Non-
Dermoscopic 

Skin Image 

Datasets 

Generalized melanoma detection 

framework using preprocessing, data 
augmentation, and VGG-16 for 

classification. 

Achieved 87% sensitivity (non-

dermoscopic) and 91% 
(dermoscopic); improved cross-

domain adaptability. 

Can be extended to other skin 

diseases; future research may 
employ explainable AI for 

interpretability. 

Research gaps: The reviewed studies reveal several 
research gaps requiring further exploration. While numerous 
models in areas such as BCIs, medical imaging, agriculture, 
and industrial inspection perform effectively, issues of 
generalization, scalability, and computing costs still persist.  A 
lot of study focuses on accuracy but don't look at other 
important things.  These include the ability to understand, 
resist noise, and work with varied datasets. Preprocessing 
pipelines generally need to be changed for each dataset, which 
makes them less useful in diverse sectors.  Lightweight and 
cloud-based solutions have promise, but they also need to 
think about how much they will cost, how well they will work 
in real time, and how well they work with other platforms. 
Future research should aim to create DL pipelines that are 
resource-efficient, interpretable, and useful in various large-
scale and multimodal environment. 

III. RESEARCH METHODOLOGY  

The Image Preprocessing Pipelines approach uses a 
smaller version of the ImageNet dataset has 10 classes. After 
scaling it to 224×224 using bilinear interpolation, it splits it 
into training, validation, and test sets.  It divides it into 
training, validation, and test sets after applying bilinear 
interpolation to scale it to 224×224.   Data preparation 
includes handling missing values, eliminating duplicates and 
distorted, denoising, data augmentation, and min-max 
normalization in order to maximize a classifier's performance.  
Feature extraction is used to turn raw Images into a small 
collection of useful features. This makes the model more 

efficient and less complicated to compute.  The dataset is split 
in half, with one group getting 80% of the data and the other 
getting 20%. This keeps the class distribution the same. A 
CNN-based model is proposed, and its performance is 
evaluated using confusion matrices to provide a thorough 
evaluation of categorization results by computing accuracy, 
precision, recall, and F1-score.  Heatmaps and bar charts are 
examples of data visualizations that are used to examine 
feature significance and model sensitivity, and the influence 
of different preprocessing and model parameters. Fig. 1 
illustrates the proposed flowchart for Image Preprocessing 
Pipelines using DL. 

The following section presents a thorough breakdown of 
every stage in the suggested technique: 

A. Data Gathering and Analysis 

This study utilizes the ImageNet dataset. A subset of the 
ImageNet dataset with 10 classes that contains large-scale, 
detailed backgrounds, introducing additional complexity. 

employ a “320 px” version of it containing approximately 

9,500 training images and about 3,920 validation images, 
from which create a test set by taking 20%, the bilinear 

interpolation method is used to resize the images to 224×224. 

Data visualizations such as bar plots and heatmaps were used 
to examine distribution, feature correlations etc., are given 
below: 
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Fig. 1. Proposed flowchart for Image Preprocessing Pipelines using Deep 

Learning  

 

Fig. 2. GRAD-CAM visualization result on the ImageNet dataset 

Figure 2 presents Gradient-weighted Class Activation 
Mapping (GRAD-CAM) visualization results on the 
ImageNet dataset, comparing MCOD and EMIL saliency 
detection methods across five sample images (portrait, car, 
space shuttle, helicopter, face). The figure displays original 
images alongside saliency maps from MCOD (Net 1, Net 2) 
and EMIL (Net 1, Net 2, Fusion). Heat maps use thermal 
coloring where blue denotes low-activation areas and red 
denotes high-activation areas. Results demonstrate that 
EMIL's fusion approach achieves superior salient object 
validating the effectiveness of the proposed ensemble strategy 
on ImageNet classification tasks. 

 

Fig. 3. Bar chart  on the ImageNet dataset for Image Preprocessing 

Pipelines 

This figure 3 bar chart presents ImageNet classification 
performance across ten image classes (beach, English 
Springer, etc.). Three experimental conditions are compared: 
different feature extractors (orange bars, ~0.25-0.5 score), 
different optimizers (blue bars, ~0.15-0.35 score), and 
different initial weights (green bars, ~0.15-0.25 score). 
Variations in feature extractors had the greatest effect on 
classification accuracy for all evaluated classes. 

B. Image Pre-processing  

The ImageNet dataset was used to get the data ready, 
which included cleaning, combining, and adding new features.  
The preparation procedures included dealing with missing 
values, getting rid of duplicate and damaged Images, getting 
rid of noise, and then adding data and normalizing it.  The 
main steps in preprocessing are as follows: 

• Handle missing value: To handle missing values, 
can delete rows or columns, use imputation to fill in 
missing values with the mean, median, mode, or a 
predicted value, or use a data analysis method robust 
to missing data. The best approach depends on the 
amount of missing data, its pattern, the type of data 
(numerical or categorical), and specific analytical 
goals.  

• Remove Duplicate and corrupted images: To 
remove duplicate images, use a duplicate finder app 
for the operating system by adding folders to scan, 
then review the results and select files to delete, often 
by choosing to "Keep All Newest" or similar options. 

• Remove Noise: Noise reduction in image processing 
is the process of computationally removing unwanted 
random variations in pixel intensity (noise) from a 
digital image to improve its overall clarity and visual 
quality.  

• Data Augmentation: The process of making altered 
copies of preexisting data in order to artificially 
increase its magnitude is referred to as data 
augmentation.  The main goal of this method is to 
increase the amount and variety of training datasets in 
ML, hence enhancing model generalization, 
mitigating overfitting, and resolving challenges such 
as class imbalance. 

C. Data Encoding 

In the context of ML, data encoding is the conversion of 
data across formats, mainly to allow ML algorithms to use it 
efficiently. This is particularly crucial for handling categorical 
data, which consists of labels or categories rather than 
numerical values. Most ML algorithms are designed to work 

ImageNet dataset 

Data Pre-processing  

Handle missing value 

Remove Duplicate and corrupted images 

Remove Noise 

Data Augmentation 

Min-Max Normalization 

Lable Encoding 

 
Feature extraction 

Data splitting 

Training Testing  

Implement Inception 

model 
Performance matrix  

• Accuracy 

• Precision 
• Recall 
• F1 Score  Results  
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with numerical input and cannot directly process string-based 
categorical features. 

D. Min-Max Normalization  

To normalize the data, the min-max method limited the 
values to a range of 0 to 1.  This was done in an effort to 
enhance the classifiers' performance and decrease the 
influence of outliers. The following mathematical formula 
was used to guide the normalization process (1): 

 𝑋′ =
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 () 

where X is the feature's original value, 𝑋′ is the normalised 
value, 𝑋𝑚𝑖𝑛 is the feature's minimum value, and 𝑋𝑚𝑎𝑥  is the 
feature's highest value. 

E. Feature Extraction 

The process of converting unprocessed, high-dimensional 
data into a smaller number of useful characteristics that keep 
important information for an ML model.  It is a key aspect of 
data preparation that simplifies complicated datasets, reduces 
computing costs, prevents overfitting, and ultimately 
accelerates and enhances algorithms by providing shorter, 
more meaningful input.  In image processing, feature 
extraction is transforming unprocessed image data into a 
condensed set of descriptive characteristics that retain 
significant information while eliminating irrelevant 
components. 

F. Data Splitting 

They separated the dataset uses a stratified 80:20 
distribution across training and testing sets, ensuring that the 
class distribution in both selections stayed the same as it was 
in the original dataset. 

G. Proposed  Inception Model on image net dataset 

The Inception model, also known as Google Net, is a 
deep CNN, performs image classification by transforming an 
input image 𝑥 ∈ 𝑅𝐻×𝑊×𝐷 into a high-dimensional feature 
representation through a hierarchy of convolutional, pooling, 
and inception modules[21]. The final prediction layer outputs 
a probability distribution over C possible classes. The 
classification process can be formulated as eqn (2): 

 𝑦̂ = 𝑎𝑟𝑔 max
𝑐∈𝐶

𝑃(𝑦 = 𝑐 |𝑥; 𝜃) () 

Where x represents the input image, y is the true class 
label, θ denotes the learnable parameters of the Inception 
network, P(𝑦 = 𝑐 |𝑥; 𝜃)is the posterior probability of class c, 
estimated by the network’s SoftMax output layer. The 
SoftMax function converts the raw output logits  𝑧 =
𝑓𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛(𝑥; 𝜃) into normalized probabilities as follows, eqn 

(3): 

 𝑃(𝑦 = 𝑐 |𝑥; 𝜃) =
𝑒𝑧𝑐

∑ 𝑒𝑧𝑖𝐶
𝑖=1

 () 

where 𝑧𝑐 denotes the activation corresponding to class c to 
optimize the classification performance, the Inception model 
minimizes the categorical cross-entropy loss, defined as eqn 
(4): 

 𝐿(𝜃) = − ∑ 𝑦𝑐𝑙𝑜𝑔𝑃(𝑦 = 𝑐 |𝑥; 𝜃)𝐶
𝑐=1  () 

where 𝑦𝑐  is the one-hot encoded ground-truth label. 
During training, stochastic gradient descent (SGD) or its 
variants are used to update the parameters θ, enabling the 
network. 

H. Evaluation metrics 

The suggested design's performance was assessed using a 
variety of measures[22]. A confusion matrix was created to 
illustrate the categorization findings by displaying the number 
of correct and incorrect guesses for each class. They got the 
values for True Positives (TP), False Positives (FP), True 
Negatives (TN), and False Negatives (FN) from this matrix.  
Then, as detailed below, these statistics were used to find key 
performance measures, including accuracy, precision, recall, 
and F1-score: 

Accuracy: The trained model's successful predictions are 
counted and then divided by the total number of times it 
received the dataset, which includes input samples. This 
number is (5)- 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+Fp+TN+FN
 () 

Precision: Precision is calculated by dividing the number 
of genuine positive predictions by the total number of positive 
predictions produced by the model. How good the classifier is 
in predicting the positive classes is expressed as (6)- 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
 () 

Recall: This statistic represents the percentage of 
occurrences that were correctly anticipated to be positive to all 
events that should have been positive. In mathematical form, 
it is given as (7)- 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃+𝐹𝑁
 () 

F1 score: It is the harmonic mean of recall and accuracy, 
that is, it helps to balance recall and precision. Its range is [0, 
1]. Mathematically, it is given as (8)-  

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 () 

IV. RESULTS AND DISCUSSION  

This section shows how the experiment was set up and the 
model's performance during testing and training. Experiments 
were implemented in Python running on Google Colab's cloud 
computing infrastructure with the TensorFlow framework in 
Jupyter Notebook. GPU acceleration was utilized with 
dynamically allocated resources: There are 78.2 GB of disk 
space, 15 GB of GPU, and 12.7 GB of RAM.   trained the 
proposed model using the ImageNet dataset and used the 
primary metrics in Table II to test it.  The Inception model has 
a 98.7% accuracy rate, a 98.5% precision rate, a 99.5% recall 
rate, and an F1-score of 98.6%.  These findings show that they 
do a fantastic job of reducing false positives while obtaining a 
high volume of real positives.  The balanced F1-score shows 
that the model is good and dependable. This illustrates that the 
automated preprocessing pipeline greatly improves the speed 
and accuracy of classification for vast amounts of imagine 
data. 

TABLE II.  CLASSIFICATION RESULTS OF THE PROPOSED MODEL,  IMAGE 

PREPROCESSING PIPELINES USING THE IMAGENET DATASET 

Matrix  Inception Model 

Accuracy 98.7 

Precision 98.5 

Recall 99.5 

F1-score 98.6 
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Fig. 4. Accuracy curve for the Inception Model 

The Inception model's training and validation accuracy in 
automated preprocessing workflows. The training accuracy 
(blue) is almost 100% as epoch 6 concludes, and the validation 
accuracy (orange) stays at 98.8%.  This big difference means 
that the model is overfitting, which means that it needs better 
regularization procedures. 

 

Fig. 5. Loss curve for the Inception model 

The loss curves for training and validation when the 
Inception model was being trained to automatically analyze 
images.   The loss that is recorded during the training (blue) is 
gradually going down from roughly 1.75 to 0.2, which is an 
indication that the model is learning. Nevertheless, the 
validation loss (orange) at epoch 2 goes up sharply and 
reaches a maximum of 2.0. This suggests that the model is 
overfitting. This discrepancy between losses indicates that we 
require more data or some regularization techniques in the 
data preparation steps. 

A. Comparative analysis 

Table III is a comparison of the proposed Inception 
model's performance with that of the existing models. The 
table here is evaluating the effectiveness of each model. 
Various deep learning architectures for automated image 
preprocessing were benchmarked on the ImageNet dataset, 
and the analysis clearly shows that the Inception model is the 
most successful one. Among the models compared, VGG16 
had the lowest accuracy at 89.71%. On the other hand, 
ResNet50 was able to achieve a higher accuracy of 93%. 
DenseNet improved the results significantly by reaching an 
accuracy of 97.63%. The proposed Inception model, 
therefore, is more efficient in capturing and processing visual 
data with the highest accuracy of 98.7%.  When compared to 
other top models, our findings demonstrate that the Inception-
based preprocessing pipeline produces stronger and more 
reliable classification performance. 

TABLE III.  COMPARISON OF DIFFERENT MACHINE LEARNING AND DEEP 

LEARNING MODELS FOR IMAGE PREPROCESSING PIPELINES ON THE 

IMAGENET DATASET 

Model Accuracy 

ResNet50 [23] 93 

VGC16[16] 89.71 

Dense Net[24] 97.63 

Inception 98.7 

The suggested Inception model, with an accuracy of 
98.7%, offers numerous benefits for image preprocessing 
processes on the ImageNet dataset.  

V. CONCLUSION AND FUTURE WORK 

This paper demonstrates that a variant of the Inception 
model is effective in the context of systematic image 
preparation protocols to classify very large volumes of images 
on the ImageNet dataset.  These pipelines also reduce 
processing power and human interaction required, thus large-
scale image analysis is more scalable and reliable.  The results 
reveal that the proposed Automated Image Preprocessing 
Pipeline significantly enhances the work of the models on 
large data. Among all the tested architectures, the Inception 
model with its accuracy of 98.7% has the highest accuracy and 
is even better than DenseNet (97.63%) VGC16 (89.71%) and 
ResNet50 (93), which proves that proper preprocessing and 
the correct choice of feature extraction and model design can 
contribute significantly to the final classification. More 
analysis, including testing on an external dataset needs to be 
done to guarantee that the gains are not in part because of 
overfitting. The next step will be to apply the suggested 
framework to the whole ImageNet dataset, which has 1000 
classes, to see how well it works for scalability and 
generalization. Research in the field of automated 
hyperparameter optimization, introduction of attention 
models, and creation of lightweight variants of the models that 
can be deployed to the edges will be undertaken. Also, the 
cross-dataset validation with medical imaging, autonomous 
systems and satellite imaging will evaluate the framework's 
adaptability to many real-world applications.  
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