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Abstract—Improving the effectiveness of deep learning (DL) for image classification on large datasets requires not only data
preprocessing but also the right network designs. In this research, a new image classification system is introduced, which applies a
modified Inception model to a subset of the ImageNet dataset containing 10 classes. Preparation of the data includes cleaning,
augmentation, normalization, and feature extraction. These activities not only preserve the quality of data but also provide efficient
input to the model. The modified Inception architectural changes enhance the original Inception network idea, thus increasing the
power of the network for feature extraction and data classification. To evaluate the results, besides the modified Inception model,
several well-known DL architectures like DenseNet, ResNet50, and VGG16 have been employed and compared using common
performance metrics. The modified Inception model achieves better performance in the classification tasks than the baseline models.
The accuracy is at 98.7%, the precision at 98.5%, the recall at 99%, and the F1-score at 98.6%. The results reported here have
highlighted the role of architectural modifications and the impact of the thorough preprocessing pipeline in boosting the performance
of image classification tasks on large datasets. Such a system offers a viable means to address challenging visual recognition problems.
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1. INTRODUCTION

In various fields like medical imaging, remote sensing,
surveillance, and industrial automation, a large number of
images are available. Sorting and viewing these images
quickly and efficiently becomes very important in such
cases[1][2]. Images are very significant for computer vision
systems nowadays. The system's capability to recognize and
understand these images is dependent on their quality.
However, real-world image data are usually accompanied by
noise, blur, fluctuating illumination, and different quality
levels. These issues can make it difficult for the models to
learn. Hence, it is very important to make sure that the images
are clear and similar when you train the model. This step is
very important for the development of image-based
intelligence systems that are able to work properly.
Nevertheless, these databases usually have raw, unstructured,
and mixed image data in them[3]. This facilitates having a
large number of images for training and ensures that models
work efficiently.

Automated preprocessing pipelines have the ability to
eliminate noise, normalize data, scale numbers, and adjust
colors without the intervention of humans[4][5][6]. Adaptive
algorithms modify how these systems examine images before
sending them to the computer, depending on what they are. It
thus makes things more efficient and stable. They can, by the
use of these methods, very quickly prepare a huge number of
images for the following stages[7][8]. Such pipelines often
perform operations like noise reduction, normalization,
scaling, augmentation, and feature enhancement. These
techniques turn huge mixed image sets into manageable ones
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which would be unfeasible to handle by hand[9]. The
existence of these types of pipelines is very essential not only
for the improvement of models but also in areas like medicine,
remote sensing, and computer vision.

Semantic segmentation is one of the core components of
computer vision. It is used in various ways such as analysing
remote sensing images, examining medical tissues, and
powering self-driving cars[10]. Deep learning (DL) has totally
changed the methods of automatic image processing. It allows
the usage of data-driven, adaptable, and scalable methods.
There are multiple deep architectures in the form of
Convolutional Neural Networks (CNNs), Autoencoders, and
Generative Adversarial Networks (GANs). They can capture
complex changes that make the visual input more realistic,
extend it, and compress it. These models take the automation
route for the most essential processes from the image domain,
like feature extraction, enhancement, and dimensionality
reduction. The result is a set of high-quality, standardized
inputs that can be further used for more
processing[11][12][13]. To take one instance, image
classification can only be improved by the use of class
activation maps and gradient analysis.

A. Motivation and Contribution

This work was mainly because DL systems need to
quickly process and analyses huge volumes of image data.
When you manually pre-process such massive datasets, it
takes a long time, is simple to make mistakes, and is typically
not consistent, which might make the model work worse.
This project aims to facilitate data cleaning, augmentation,
normalization, and feature extraction through the
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development of an automated image preparation process.
This guarantees that DL models receive standardized, high-
quality input. This method is quite useful in the actual world,
because there is often a lot of high-dimensional image data
accessible. It improves models, making them more powerful,
and their ability to distinguish different things gets better. In
addition, the load that people and machines have to share is
lightened. This research has brought in a variety of significant
contributions that are elaborated in detail below:

e Tested the process on a smaller version of the
ImageNet dataset with 10 classes. This helped us
evaluate its effectiveness. The results showed that it
can manage complex, real-world images.

e C(Cleaned data to fix missing values, remove duplicates
and corrupted images, and lower noise.

e  Used data augmentation and normalization to increase
dataset variety and standardize input values for better
model performance.

e  Conducted feature extraction to transform raw images
into meaningful, compact representations, reducing
computational complexity and enhancing model
efficiency.

e Designed an Inception-based model tailored for large-
scale image classification to effectively learn and
extract hierarchical features from preprocessed data.

e  Assessed evaluating the model's overall performance
using measures such as F1-score, recall, accuracy, and
precision.

B. Organization of the Paper

The paper is structured as follows: Section II reviews the
related work on image preprocessing pipelines, Section III
describes the dataset, preprocessing steps, and model
implementation, Section IV presents the experimental results
with comparative analysis, and Section V concludes the study
by highlighting important discoveries and suggesting avenues
for further study.

II. LITERATURE REVIEW

A comprehensive review of existing research on image
preprocessing pipelines was conducted to support this study.
Table I summarizes recent works, outlining the proposed
models, datasets, key outcomes, and identified challenges.

Kumar, Singh and Kumar Dewangan (2025) introduces a
novel convolutional neural network (CNN) architecture
tailored for cactus identification from aerial photographs. The
proposed cloud-based pipeline enhances training efficiency
through scalable data storage, preprocessing, and distributed
training across platforms such as Amazon Web Services
(AWS), Google Cloud Platform (GCP), and Microsoft Azure.
the model’s computational efficiency, shorter training
durations, and cost-effectiveness. The model integrates
residual connections and depth wise separable convolutions,
achieving 96.7% accuracy on the aerial cactus identification
dataset. The results highlight the model’s high performance,
cost-efficiency, and scalability, making it suitable for real-
world aerial image classification tasks[14].

S and C (2025) a comprehensive analysis of various
preprocessing techniques for chromosome metaphase image
detection using DL models. Through extensive
experimentation, the combination of CLAHE, Gamma
Correction, and Median Filtering is shown to outperform other
preprocessing methods based on both subjective and objective
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evaluation metrics. The proposed method achieves
exceptional results with an MSE of 3.49, a PSNR of 32.02, an
SSIM of 0.99, an Entropy of 4.32, and an Edge Density of
0.03. Moreover, post-detection accuracy is significantly
improved, increasing from 73% to 95% when the proposed
preprocessing approach is applied before the detection
task[15].

Tariku et al. (2024), A multi-step pipeline that includes
Enhanced  Super-Resolution = Generative  Adversarial
Networks (ESRGAN) for resolution augmentation, Contrast-
Limited Adaptive Histogram Equalisation (CLAHE) for
Image quality is enhanced by contrast enhancement and white
balance tweaks for correct colour representation.  These
preprocessing methods guarantee high-quality input data,
which enhances model performance. A remarkable 97.88%
accuracy rate was attained by the VGG-16 + SVM model for
feature extraction and classification on a dataset[16].

Kussul et al. (2024) provides a new way to preprocess
Synthetic Aperture Radar (SAR) satellite images to make it
casier to find oil spills using DL models. A transfer learning
approach with the LinkNet segmentation architecture pre-
trained on ImageNet is employed. The model is trained on
Sentinel-1 SAR data from 2018-2023 using a designed
preprocessing pipeline that converts the single-channel SAR
input to a 3-channel RGB image transforming the original
SAR intensity values to a normal distribution, extracting
nonlinear features, and encoding them into the RGB channels.
Quantitative results on a test set show the preprocessed model
achieves an improvement of 0.038 in Fl-score and 0.054 in
Intersection [17].

Sun et al. (2023) employing a multi-layer convolutional
network to extract the feature information of grape leaves,
decreasing model overfitting by adding a data augmentation
layer, avoiding aliasing in the gradient direction by using the
Leaky Relu activation function, and adding a flat layer By
"flattening" convolutional pooling data and one-dimensional
multi-dimensional data, the Adam optimizer can increase
network efficiency, enhance sparse gradient performance, and
shorten training times. The convolutional neural network
CNN-GLS model has a 95.13% accuracy rate in identifying
tiny samples of grape leaves, according to the experimental
data. The model is resilient and has a high capacity for

generalization, which is crucial for plant taxonomic
identification[18].
Yang et al (2022) proposes YOLO-Xweld, a

revolutionary approach that uses the properties of pipeline
weld X-ray images to weaken large-scale network detection
branches and identify pipeline welding flaws for limited
application situations. In order to create a lightweight model
and lessen reliance on high-performance hardware, Depthwise
separable convolution is implemented. Experiments reveal
that the model's size has decreased and the floating-point
operations and parameter counts have dropped by almost
70%. In the limited pipeline weld detection context, this is
crucial for decreasing reliance on high-performance hardware
and improving operability and ease during inspections[19].

Sarkar er al. (2022) emphasize melanoma detection in
either dermoscopic or non-dermoscopic images, but not both,
and offer a unique generalized framework that can identify
melanoma in both images. A VGG-16 model is followed by
a preprocessing pipeline, data augmentation, and class
imbalance resolution. The sensitivity of the model is 87% on
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non-dermoscopic images and 91% on dermoscopic images
(for melanoma patients)[20].

TABLE I. RECENT STUDIES ON IMAGE PREPROCESSING PIPELINES USING DEEP LEARNING

Author & Year Dataset Methodology Key Findings Limitations / Future Work
Kumar, Singh & | Aerial Cactus | Proposed a novel CNN architecture with | Achieved 96.7% accuracy; | Future work may focus on
Dewangan Identification residual connections and depthwise | demonstrated high computational | optimizing cross-cloud resource
(2025) Dataset separable convolutions integrated into a | efficiency, shorter training times, | allocation and extending model
cloud-based pipeline (AWS, GCP, Azure) | and cost-effectiveness for aerial | adaptability to other remote-

for scalable training and preprocessing. image classification. sensing datasets.
S. & C. (2025) Chromosome Combined CLAHE, Gamma Correction, | Improved detection accuracy from | Requires validation on larger,
Metaphase and Median Filtering as preprocessing | 73% to 95%, with performance | more diverse chromosome
Image Dataset techniques before deep learning-based | metrics: MSE=3.49, PSNR=32.02, | datasets; computational
detection. SSIM=0.99, Entropy=4.32, Edge | complexity = of  combined
Density=0.03. preprocessing may be
optimized.

Tariku et al.
(2024)

Custom Image
Dataset

Multi-step preprocessing using ESRGAN
for super-resolution, CLAHE for contrast,
and  white  balance  adjustment;
classification with VGG-16 + SVM.

Achieved
significantly

97.88%
enhanced

accuracy;
image

Future work could integrate
real-time preprocessing and

Kussul et al.
(2024)

Sentinel-1 SAR
Satellite

Proposed  preprocessing  converting
single-channel SAR to 3-channel RGB

Imagery (2018-

via transformation and feature encoding;

quality and feature extraction | compare with newer hybrid
effectiveness. CNN architectures.

Improved Fl-score by 0.038 and | Model performance needs
ToU by 0.054 for oil spill detection; | validation on other satellite
enhanced SAR interpretability. sensors; future work may

optimizer for efficient training.

2023) LinkNet with transfer learning on explore real-time detection and
ImageNet. multi-temporal analysis.
Sunetal. (2023) | Grape Leaf | Developed CNN-GLS model with data | Achieved 95.13% accuracy with | May  extend to  larger
Image Dataset augmentation layer, Leaky ReLU | strong robustness and | agricultural  datasets  and
activation, Flatten layer, and Adam | generalization in small-sample | incorporate transfer learning for

grape leaf species recognition. improved scalability.

Yang et al. | Pipeline Weld | Proposed YOLO-Xweld with depthwise | Reduced model parameters and | Future work includes real-time
(2022) X-ray  Image | separable convolution to detect weld | FLOPs by over 70%, maintaining | deployment and further
Dataset defects; optimized for lightweight | high accuracy; suitable for | miniaturization for embedded
operation and reduced computation. resource-constrained systems.
environments.
Sarkar et al. | Dermoscopic & | Generalized melanoma detection | Achieved 87% sensitivity (non- | Can be extended to other skin
(2022) Non- framework using preprocessing, data | dermoscopic) and 91% | diseases; future research may
Dermoscopic augmentation, and VGG-16  for | (dermoscopic); improved cross- | employ explainable AI for
Skin Image | classification. domain adaptability. interpretability.
Datasets

Research gaps: The reviewed studies reveal several
research gaps requiring further exploration. While numerous
models in areas such as BCls, medical imaging, agriculture,
and industrial inspection perform effectively, issues of
generalization, scalability, and computing costs still persist. A
lot of study focuses on accuracy but don't look at other
important things. These include the ability to understand,
resist noise, and work with varied datasets. Preprocessing
pipelines generally need to be changed for each dataset, which
makes them less useful in diverse sectors. Lightweight and
cloud-based solutions have promise, but they also need to
think about how much they will cost, how well they will work
in real time, and how well they work with other platforms.
Future research should aim to create DL pipelines that are
resource-efficient, interpretable, and useful in various large-
scale and multimodal environment.

III. RESEARCH METHODOLOGY

The Image Preprocessing Pipelines approach uses a
smaller version of the ImageNet dataset has 10 classes. After
scaling it to 224x224 using bilinear interpolation, it splits it
into training, validation, and test sets. It divides it into
training, validation, and test sets after applying bilinear
interpolation to scale it to 224x224. Data preparation
includes handling missing values, eliminating duplicates and
distorted, denoising, data augmentation, and min-max
normalization in order to maximize a classifier's performance.
Feature extraction is used to turn raw Images into a small
collection of useful features. This makes the model more
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efficient and less complicated to compute. The dataset is split
in half, with one group getting 80% of the data and the other
getting 20%. This keeps the class distribution the same. A
CNN-based model is proposed, and its performance is
evaluated using confusion matrices to provide a thorough
evaluation of categorization results by computing accuracy,
precision, recall, and Fl-score. Heatmaps and bar charts are
examples of data visualizations that are used to examine
feature significance and model sensitivity, and the influence
of different preprocessing and model parameters. Fig. 1
illustrates the proposed flowchart for Image Preprocessing
Pipelines using DL.

The following section presents a thorough breakdown of
every stage in the suggested technique:

A. Data Gathering and Analysis

This study utilizes the ImageNet dataset. A subset of the
ImageNet dataset with 10 classes that contains large-scale,
detailed backgrounds, introducing additional complexity.
employ a “320 px” version of it containing approximately
9,500 training images and about 3,920 validation images,
from which create a test set by taking 20%, the bilinear
interpolation method is used to resize the images to 224 X224,
Data visualizations such as bar plots and heatmaps were used
to examine distribution, feature correlations etc., are given
below:
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Fig. 1. Proposed flowchart for Image Preprocessing Pipelines using Deep
Learning
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Fig. 2. GRAD-CAM visualization result on the ImageNet dataset

Figure 2 presents Gradient-weighted Class Activation
Mapping (GRAD-CAM) visualization results on the
ImageNet dataset, comparing MCOD and EMIL saliency
detection methods across five sample images (portrait, car,
space shuttle, helicopter, face). The figure displays original
images alongside saliency maps from MCOD (Net 1, Net 2)
and EMIL (Net 1, Net 2, Fusion). Heat maps use thermal
coloring where blue denotes low-activation areas and red
denotes high-activation areas. Results demonstrate that
EMIL's fusion approach achieves superior salient object
validating the effectiveness of the proposed ensemble strategy
on ImageNet classification tasks.
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Fig. 3. Bar chart
Pipelines

on the ImageNet dataset for Image Preprocessing

This figure 3 bar chart presents ImageNet classification
performance across ten image classes (beach, English
Springer, etc.). Three experimental conditions are compared:
different feature extractors (orange bars, ~0.25-0.5 score),
different optimizers (blue bars, ~0.15-0.35 score), and
different initial weights (green bars, ~0.15-0.25 score).
Variations in feature extractors had the greatest effect on
classification accuracy for all evaluated classes.

B. Image Pre-processing

The ImageNet dataset was used to get the data ready,
which included cleaning, combining, and adding new features.
The preparation procedures included dealing with missing
values, getting rid of duplicate and damaged Images, getting
rid of noise, and then adding data and normalizing it. The
main steps in preprocessing are as follows:

e Handle missing value: To handle missing values,
can delete rows or columns, use imputation to fill in
missing values with the mean, median, mode, or a
predicted value, or use a data analysis method robust
to missing data. The best approach depends on the
amount of missing data, its pattern, the type of data
(numerical or categorical), and specific analytical
goals.

e Remove Duplicate and corrupted images: To
remove duplicate images, use a duplicate finder app
for the operating system by adding folders to scan,
then review the results and select files to delete, often
by choosing to "Keep All Newest" or similar options.

e Remove Noise: Noise reduction in image processing
is the process of computationally removing unwanted
random variations in pixel intensity (noise) from a
digital image to improve its overall clarity and visual
quality.

e Data Augmentation: The process of making altered
copies of preexisting data in order to artificially
increase its magnitude is referred to as data
augmentation. The main goal of this method is to
increase the amount and variety of training datasets in
ML, hence enhancing model generalization,
mitigating overfitting, and resolving challenges such
as class imbalance.

C. Data Encoding

In the context of ML, data encoding is the conversion of
data across formats, mainly to allow ML algorithms to use it
efficiently. This is particularly crucial for handling categorical
data, which consists of labels or categories rather than
numerical values. Most ML algorithms are designed to work
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with numerical input and cannot directly process string-based
categorical features.

D. Min-Max Normalization

To normalize the data, the min-max method limited the
values to a range of 0 to 1. This was done in an effort to
enhance the classifiers' performance and decrease the
influence of outliers. The following mathematical formula
was used to guide the normalization process (1):

X/ — X~ Xmin (1)
Xmax—Xmin
where X is the feature's original value, X" is the normalised
value, X, 1s the feature's minimum value, and X, is the
feature's highest value.

E. Feature Extraction

The process of converting unprocessed, high-dimensional
data into a smaller number of useful characteristics that keep
important information for an ML model. It is a key aspect of
data preparation that simplifies complicated datasets, reduces
computing costs, prevents overfitting, and ultimately
accelerates and enhances algorithms by providing shorter,
more meaningful input. In image processing, feature
extraction is transforming unprocessed image data into a
condensed set of descriptive characteristics that retain
significant information while eliminating irrelevant
components.

F. Data Splitting

They separated the dataset uses a stratified 80:20
distribution across training and testing sets, ensuring that the
class distribution in both selections stayed the same as it was
in the original dataset.

G. Proposed Inception Model on image net dataset

The Inception model, also known as Google Net, is a
deep CNN, performs image classification by transforming an
input image x € RF*"*P into a high-dimensional feature
representation through a hierarchy of convolutional, pooling,
and inception modules[21]. The final prediction layer outputs
a probability distribution over C possible classes. The
classification process can be formulated as eqn (2):

Yy =argmaxP(y =c|x;0) 2)
cec

Where x represents the input image, y is the true class
label, 8 denotes the learnable parameters of the Inception
network, P(y = c |x; 8)is the posterior probability of class c,
estimated by the network’s SoftMax output layer. The
SoftMax function converts the raw output logits =z =
finception (X; 8) into normalized probabilities as follows, eqn
3):
eZc

oo (3)

where z, denotes the activation corresponding to class ¢ to
optimize the classification performance, the Inception model
minimizes the categorical cross-entropy loss, defined as eqn

(4):

P(y=clx;6) =

L(B) = =Xl y:logP(y = c |x; ) “4)

where y. is the one-hot encoded ground-truth label.
During training, stochastic gradient descent (SGD) or its
variants are used to update the parameters 0, enabling the
network.
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H. Evaluation metrics

The suggested design's performance was assessed using a
variety of measures[22]. A confusion matrix was created to
illustrate the categorization findings by displaying the number
of correct and incorrect guesses for each class. They got the
values for True Positives (TP), False Positives (FP), True
Negatives (TN), and False Negatives (FN) from this matrix.
Then, as detailed below, these statistics were used to find key
performance measures, including accuracy, precision, recall,
and F1-score:

Accuracy: The trained model's successful predictions are
counted and then divided by the total number of times it
received the dataset, which includes input samples. This
number is (5)-

TP+TN

Accuracy = ——
Y TP+Fp+TN+FN

&)

Precision: Precision is calculated by dividing the number
of genuine positive predictions by the total number of positive
predictions produced by the model. How good the classifier is
in predicting the positive classes is expressed as (6)-

TP
TP+FP

Precision = ©)
Recall: This statistic represents the percentage of
occurrences that were correctly anticipated to be positive to all
events that should have been positive. In mathematical form,
it is given as (7)-
TP
TP+FN

Recall = @)

F1 score: It is the harmonic mean of recall and accuracy,
that is, it helps to balance recall and precision. Its range is [0,
1]. Mathematically, it is given as (8)-

PrecisionxRecall
F1 —score =2 X ————— ®)

Precision+Recall

IV. RESULTS AND DISCUSSION

This section shows how the experiment was set up and the
model's performance during testing and training. Experiments
were implemented in Python running on Google Colab's cloud
computing infrastructure with the TensorFlow framework in
Jupyter Notebook. GPU acceleration was utilized with
dynamically allocated resources: There are 78.2 GB of disk
space, 15 GB of GPU, and 12.7 GB of RAM. trained the
proposed model using the ImageNet dataset and used the
primary metrics in Table II to test it. The Inception model has
a 98.7% accuracy rate, a 98.5% precision rate, a 99.5% recall
rate, and an F1-score of 98.6%. These findings show that they
do a fantastic job of reducing false positives while obtaining a
high volume of real positives. The balanced F1-score shows
that the model is good and dependable. This illustrates that the
automated preprocessing pipeline greatly improves the speed
and accuracy of classification for vast amounts of imagine
data.

TABLE II. CLASSIFICATION RESULTS OF THE PROPOSED MODEL, IMAGE
PREPROCESSING PIPELINES USING THE IMAGENET DATASET

Matrix Inception Model
Accuracy 98.7
Precision 98.5

Recall 99.5
Fl-score 98.6
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Fig. 4. Accuracy curve for the Inception Model

The Inception model's training and validation accuracy in
automated preprocessing workflows. The training accuracy
(blue) is almost 100% as epoch 6 concludes, and the validation
accuracy (orange) stays at 98.8%. This big difference means
that the model is overfitting, which means that it needs better
regularization procedures.
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Fig. 5. Loss curve for the Inception model

The loss curves for training and validation when the
Inception model was being trained to automatically analyze
images. The loss that is recorded during the training (blue) is
gradually going down from roughly 1.75 to 0.2, which is an
indication that the model is learning. Nevertheless, the
validation loss (orange) at epoch 2 goes up sharply and
reaches a maximum of 2.0. This suggests that the model is
overfitting. This discrepancy between losses indicates that we
require more data or some regularization techniques in the
data preparation steps.

A. Comparative analysis

Table III is a comparison of the proposed Inception
model's performance with that of the existing models. The
table here is evaluating the effectiveness of each model.
Various deep learning architectures for automated image
preprocessing were benchmarked on the ImageNet dataset,
and the analysis clearly shows that the Inception model is the
most successful one. Among the models compared, VGG16
had the lowest accuracy at 89.71%. On the other hand,
ResNet50 was able to achieve a higher accuracy of 93%.
DenseNet improved the results significantly by reaching an
accuracy of 97.63%. The proposed Inception model,
therefore, is more efficient in capturing and processing visual
data with the highest accuracy of 98.7%. When compared to
other top models, our findings demonstrate that the Inception-
based preprocessing pipeline produces stronger and more
reliable classification performance.
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TABLE III. COMPARISON OF DIFFERENT MACHINE LEARNING AND DEEP
LEARNING MODELS FOR IMAGE PREPROCESSING PIPELINES ON THE

IMAGENET DATASET
Model Accuracy
ResNet50 [23] 93
VGC16[16] 89.71
Dense Net[24] 97.63
Inception 98.7

The suggested Inception model, with an accuracy of
98.7%, offers numerous benefits for image preprocessing
processes on the ImageNet dataset.

V. CONCLUSION AND FUTURE WORK

This paper demonstrates that a variant of the Inception
model is effective in the context of systematic image
preparation protocols to classify very large volumes of images
on the ImageNet dataset. These pipelines also reduce
processing power and human interaction required, thus large-
scale image analysis is more scalable and reliable. The results
reveal that the proposed Automated Image Preprocessing
Pipeline significantly enhances the work of the models on
large data. Among all the tested architectures, the Inception
model with its accuracy of 98.7% has the highest accuracy and
is even better than DenseNet (97.63%) VGC16 (89.71%) and
ResNet50 (93), which proves that proper preprocessing and
the correct choice of feature extraction and model design can
contribute significantly to the final classification. More
analysis, including testing on an external dataset needs to be
done to guarantee that the gains are not in part because of
overfitting. The next step will be to apply the suggested
framework to the whole ImageNet dataset, which has 1000
classes, to see how well it works for scalability and
generalization. Research in the field of automated
hyperparameter optimization, introduction of attention
models, and creation of lightweight variants of the models that
can be deployed to the edges will be undertaken. Also, the
cross-dataset validation with medical imaging, autonomous
systems and satellite imaging will evaluate the framework's
adaptability to many real-world applications.
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