Volume (2) No (1), 2026
Journal of Global Research in Multidisciplinary Studies (JGRMS)
Review Paper
Available online at https://saanvipublications.com/journals/index.php/jgrms/index

Survey on Al-Based Predictive Cooling in Data
Centers and Edge Devices

Dr. Nilesh Jain
Associate Professor
Department of Computer Sciences and Applications
Mandsaur University Mandsaur
nileshjainmca@gmail.com

Abstract—Increasing energy consumption and thermal
concentration in current data centers and thermal power
systems necessitates a high level of cooling technologies and
intelligent control measures in these systems to attain efficiency,
reliability and sustainability. Modern data center cooling
systems are covered in this paper. These systems include liquid,
air, immersion, spray, and hybrid options. Optimization
techniques offered include PID control, model predictive
control, and reinforcement learning. Plus, it delves into how
ML, DL, and RL (reinforcement learning) may revolutionize
cooling prediction, real-time adaptability, and energy
optimization. The article also delves into the topic of parameter
control in thermochemical treatment processes, including
gasification, combustion, and pyrolysis, covering topics like the
impact of pressure, heating rate, residence time, and
temperature on performance and energy output. The paper
illuminates both Al-based and data-based solutions to the better
thermal management, emissions cuts, stronger robustness, and
sustainable operation.

Keywords—Data center cooling, Intelligent thermal management,
Liquid and immersion cooling, Predictive cooling, Optimization
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I. INTRODUCTION

The widespread adoption of smart devices and sensors has
been accelerated by the digitisation of services and is now
pervasive in many different industries, including
transportation, healthcare, sports, and beyond. Internet of
Things (IoT) [1][2] is the principal technology behind this
change; it establishes a wireless network of diverse items,
such as sensors, vehicles, and home appliances. Cloud
computing and edge computing are two examples of third-
party computers that receive and aggregate data; the latter
allows for more complicated analysis to be performed
remotely. By bringing the processing power closer to the
user's location, edge computing [3] reduces latency and
improves performance. An additional use for it is as an
intermediate layer, which distributes resources by splitting up
computationally intensive jobs among several nodes. One
benefit of edge computing is the assurance of user privacy
provided by processing sensitive information locally,
independent of the cloud. In addition to lowering transmission
bandwidth and operational expenses, the tiny data volume
being transmitted also helps. The extremely demanding
processing time requirements of real-time systems often
necessitate the use of edge computing. These systems are
commonly found in industrial and security applications.
Topical and quick actions of rescue workers are required in
the critical situations, when many people are involved, e.g. in
the case of emergency in high-rise buildings [4]. A framework
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based on IoT [5] has been created to deal with monitoring
various environmental parameters and informing the rescuers
on whether thresholds are crossed and hence the usefulness of
edge computing [6] to locally process the information and
obtain real-time alerts and enhance responsiveness.

Data Centres are the basis of digital technologies in the
energy sphere, which makes it possible to conduct advanced
analytics, optimization, and automation [7]. The move of the
traditional data centre design to the more dynamic and
efficient project is becoming a critical issue in the current IT
environment. The traditional data centre, which typically
follows a predetermined paradigm for resource allocation and
construction, ought to be better prepared to handle the ever-
changing requirements of contemporary workloads. A great
increase in the demand for data production and storage has
resulted from the proliferation of digital technologies in many
sectors, including the energy industry, e-commerce, cloud
computing, telecommunications, and the Internet of Things
(IoT) [8][9]. The need for data centres to support the
expanding digital infrastructure has been driven up by this
factor. However, data centres are power hogs since they
require a steady stream of electricity to operate their
equipment and maintain optimal storage conditions for data.
There are growing worries about the impact of data centres on
environmental sustainability because to their high emissions
of greenhouse gases and negative impacts on water resources
and air quality. Hence, data centres must be developed and
operated in a sustainable manner so as to have minimal
environmental effects and as much energy efficiency as
possible.

Intelligent system design is required to tackle the difficult
problem of reducing data centre energy usage [10] while
preserving the requirements of compute resources. When
dealing with a live data centre, the difficulty level rises even
further. A temperature model that takes into account both
internal and external factors, such as server energy
consumption and the state of the cooling system, can estimate
the temperature within the cooling system's hot corridor and
help reach this goal without negatively impacting the compute
resources' working conditions [11]. Optimising architectural
design schemes and equipment control schemes are two main
ways to increase the efficiency of data centre cooling systems.
Coatings that improve indoor air quality are one example of
how architectural design schemes are being optimised [12].
Data centre cooling efficiency and airflow homogeneity can
be enhanced through duct network design optimisation, for
instance. A new control mechanism is required for the data
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centre’s cooling systems so that they may be fine-tuned to
reduce energy consumption and increase operating efficiency.

Data Centre (DC) operations are constantly being
optimised and automated with the help of models from Al and
ML [13]. More and more DCs are turning to Al and ML apps
to streamline and automate their processes. The use of Al and
ML models is replacing traditional heuristics and technical
solutions in DCs as they scale to meet ever-increasing
demands. This has a major impact on plant performance
modelling and efficiency improvement. Improving the
accuracy of predictions is possible by utilising these powerful
technologies across several layers, with a focus on information
technology and cooling systems. Energy efficiency, cooling
efficiency, resource allocation, problem detection, and many
other operational optimisation and management tasks are all
under their purview. Neural networks (both convolutional and
recursive), LSTM, and GRUs (gated recurrent units) are the
DL methods under scrutiny. Building energy performance
prediction, simulation, control, and optimisation using
machine learning and deep learning apps. Here is the energy
distribution in data centres, as seen in Figure 1.
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Fig. 1. Schematic Diagram of Data Center Energy Distribution

A. Structure of the Paper

The paper is based on the following structure, Section II:
reviews data center cooling technologies and optimization
strategies. Section III refers to Al methods of predictive
cooling. Section IV looks at the parameter control in thermal
treatments in thermochemical. The literature evaluation is
presented in Section V, and the paper is concluded with
Section VI, which includes the main findings and areas for
future study.

II. COOLING TECHNOLOGIES AND OPTIMIZATION CONTROL
STRATEGIES IN DATA CENTERS

The cooling of electronic components in base station
antennas and last-generation mobile telecommunication
networks, energy consumption, and intelligent thermal
management are all important areas for future study and
development [14]. Over the past few years, thermal
management in high-power integrated circuits (ICs) has been
an important field of research, especially with increasing
demands on industries needing more efficient cooling
systems, including the telecommunications and data centers
industries. The data center components are illustrated in
Figure 2.
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Fig. 2. Components of Data Center Energy Consumption

B. Liquid Cooling Technologies in Data Centers

The high thermal conductivity and specific heat capacity
of liquids are used in liquid cooling technology to effectively
get rid of heat and keep the equipment within a safe working
temperature range, as shown in Figure 3. Using a sealed
system to circulate a coolant, liquid cooling technology
efficiently manages the heat produced by data centre
equipment. First, there's the cooling water system, which uses
towers to lower the water's temperature and dissipate the
excess heat into the surrounding environment. The third stage
involves transferring the cooled water to the central
distribution unit (CDU), which supplies further cooling
systems directly connected to the equipment. The CDU serves
as a hub for the coolant distribution process. Specialised
cooling systems in the data center's server cabinets distribute
the coolant evenly throughout the room. By soaking up the
heat that the servers produce, the systems keep them at the
ideal working temperatures. Pumping the heated coolant back
to the CDU and then recirculating it to the cooling towers
repeats the cycle.
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Fig. 3. Basic Mechanism of Liquid Cooling Technology

1) Cold Plate Liquid Cooling

Liquid cooling at the chip level is an indirect approach
where it follows the heat dissipation process of components
producing a lot of heat by mounting cold plates on server
CPUs and GPUs. An eco-friendly characteristic is its ability
to use warm water as a coolant for direct-to-chip cooling,
which is one of its remarkable qualities. At 45 °C or higher,
this method can produce waste heat from water. Front and
centre, show a waste heat recovery tubes on the majority of
commercial liquid cooling products [14]. Keep in mind that
the CDU's primary and secondary sides are both capable of
recovering waste heat.
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2) Immersion Liquid Cooling

The heat-emitting electronic components of an immersion
liquid cooling system are submerged in a circulating coolant,
resulting in a rapid heat exchange rate. The entire system is
covered with a non-conductive coolant, such as mineral oil,
silicone oil, or fluorinated fluids, while the IT equipment is in
operation. The coolant's ability to undergo a phase transition
during heat exchange is the defining characteristic of single-
phase versus two-phase immersion cooling.

3) Spray Liquid Cooling

In contrast to the two above systems, heat exchange is
attained by directly spraying the coolant over electronic
equipment using specially designed nozzles with the spray
liquid cooling technology. The coolant is applied onto the
electronic equipment or other heat-conducting material
surface directly during spraying. The hot coolant is recovered
by the return pipeline of the system and pumped back to the
CDU to cool. The cooling tower, control distribution unit
(CDU), liquid cooling pipeline, spray liquid cooling cabinet,
and pipeline system are the typical components of this
mechanism, which is known for its precise and efficient
cooling process. Spray cooling can be used in many other
applications with promising future prospects in the aerospace,
biomedicine, and battery safety areas [15]. Ongoing
developments are likely to make it more efficient and
applicable, defeating the current technological limitations and
broadening the range of its activities to more developed and
compact electronics.

C. Air Cooling Technologies in Data Centers

Air conditioning methods utilise fans to facilitate the
cooling of refrigerant within the condenser, with heat
dissipation occurring directly into the ambient air, as depicted
in Figure 4. By eliminating the need for cooling towers,
pumps, and pipes, this approach may guarantee proper cooling
operation in 24 out of 42 water-scarce settings, in comparison
to water-cooled chiller systems. Because of its simplicity,
dependability, and ease of maintenance, air-cooled chiller
systems are extensively utilised in medium to large data
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Fig. 4. Basic mechanism of air-cooling technology

1) Direct Air Cooling

Direct air cooling is simple and does not cost much
especially in areas where the quality and the temperature of
the ambient air are within the acceptable range of IT
equipment operation [9]. Nonetheless, this approach is
limited. It performs poorly in hot or polluted situations
because its efficacy is significantly impacted by ambient air
conditions. One other issue is the reliance on high-speed fans,
which can generate a lot of noise—not ideal for data centres
with a lot of users. Additionally, the system's cooling
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capability is limited compared to liquid cooling solutions due
to air heat dissipation, making it less appropriate for extremely
high-density configurations or high-performance computing
(HPC) applications with a large heat load.

2) Indirect Air Cooling

Indirect air-cooling is a type of technology that removes
heat by exchanging one medium with another by using a heat
exchanger where typically the heat is removed by exchanging
the hot equipment with water or coolant, which subsequently
cools by exchange of heat through the air. Heat exchangers
can be found in the data center in indirect air cooling systems
[16], Indirect air-cooling is a type of technology that removes
heat by exchanging one medium with another by using a heat
exchanger where typically the heat is removed by exchanging
the hot equipment with water or coolant, which subsequently
cools by exchange of heat through the air. Heat exchangers
can be found in the data center in indirect air cooling systems.

3) Evaporate Cooling

Cold air is created by absorbing heat as water evaporates;
this process is known as evaporative cooling. By reducing the
air temperature and increasing humidity, it achieves better
thermal management. Evaporative cooling systems in
environmentally conscious buildings use a combination of air
cooling and natural evaporation to keep indoor temperatures
tolerable while reducing the energy consumption of HVAC
systems [17]. Even in extremely hot environments, this
technology can significantly improve the system's efficiency
and performance in terms of output. In extremely humid
environments, evaporative cooling is nearly useless. The
efficiency of this cooling method is highly dependent on the
relative humidity of the surrounding air. The system also
needs water supply that is constant and this may be a
constraint in the scarcity of water in a region. The system
should be regularly maintained to eliminate the possibility of
mild and bacteria development and thereby impact the quality
of air and efficiency of the system.

D. Optimization Control Strategies for Cooling Systems in
Data Centers

Modern data centres rely heavily on the process of
managing cooling systems to function. In addition to
bolstering overall performance and dependability, this calls
for the implementation of cutting-edge technology and
methodologies to increase efficiency and decrease energy
usage. Due to the inadequacy of the previous systems based
on experience-based approaches, automation control
strategies have emerged as a crucial instrument to deal with
the increasing scale and complexity of data centres' operations
[18]. Intelligent control system approaches utilise additional
monitoring and automatic control to allow cooling equipment
to be modified in real-time according to the actual thermal
load. Not only can these techniques improve the system's
intelligence and automation, but they also maximise
operational efficiency and cost-effectiveness.

1) PID Control

The optimisation control of cooling systems in data centres
often makes use of PID control. Stabilising operation levels at
predetermined points is the primary goal of this widely used
method, which is compatible with the majority of
conventional cooling systems. Unfortunately, PID control has
its limits when confronted with complicated and dynamic
situations. One hundred years ago, PID technology was first
created for processes with just one input and one output.
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2) Model Predictive Control (MPC)

MPC's  unparalleled predictive and optimisation
capabilities have garnered it widespread interest in data centre
control and established it as a foundational technology for
enhancing system performance in terms of responsiveness and
efficiency. Creating predictive optimisation strategies to
improve chilled water systems overall is a prime example of
how MPC is expected to regulate and mediate the connection
between system performance and energy efficiency.

3) Reinforcement Learning

This is an advanced intelligent control strategy, which is
known as reinforcement learning (RL) and has shown a lot of
potential in terms of adaptive adaptation and performance
optimization. The RL methods have intensively been used to
make data center and cooling systems more energy efficient
and responsive, and have demonstrated significant potential in
responding to complex and dynamic environments.

III. AI TECHNIQUES FOR PREDICTIVE COOLING

The AI technologies layer processes, improves, and digs
deeper into the data and information received from the
information analysis layer by using computers, tweaking
hardware, and Al models. This aids in real-time dynamic
control and makes judgements with better precision. For the
data centre, this means smart management of the cooling
system that makes the most efficient use of the available
energy. By combining several Al models such as knowledge
graphs, deep reinforcement learning, and generative Al, gain
deep insights into the complex system's operational status and
optimize it.

E. Machine Learning Algorithms

The algorithms of artificial intelligence began to thrive in
the early 1950s, and scientists already theorized that it was
possible to give machines the ability to reason logically, and
they would become intelligent. This stage's notable
accomplishments include, among others, the Logic Theorist
and General Problem-Solving programs [19]. Advances in
research, however, have shown that Al cannot be achieved
through the application of logic alone. Following this, a
plethora of expert systems were developed through the
process of imparting information to computers [20]. But
expert systems are confined in their application spectrum
because of their complexity. A number of connectionisms
based on neural networks and inductive learning systems
based on logic have emerged in the last several decades,
ushering in the era of learning machines in the field of
artificial intelligence. The circumstances under which distinct
ml algorithms perform optimally in diverse application
contexts vary greatly, reflecting the recent growth of machine
learning as a substantial academic area.

1) Support Vector Machine (SVM)

SVM is a ML model that excels in high-dimensional,
nonlinear phenomena, small sample sizes, and adheres to the
structural risk minimisation principle and the Statistical
Learning Theory's dimension approach. Pattern recognition,
regression modelling, and many more fields can benefit from
it. This method is expressed as a problem of limited quadratic
programming [21]. Traditional optimisation techniques
effective for small-scale QP. However, this methodology
suffers when the size of the training corpus increases, leading
to sluggish training speed, complicated algorithm design, and
decreased efficiency. Presently, training entails breaking
down a big QP problem into smaller ones, solving each of
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those subproblems in turn until reaching a solution that is
close to the original.

2) Decision Tree

The decision tree algorithm provides a framework for
understanding hierarchical data structures, decision rules, and
categorisation outputs. This algorithm is an example of
inductive learning; it takes raw data and sorts it into trees,
which can then represent unknown data in a predictive way.
Where each internal node stands for a feature attribute test
[22], each outward branch for the test's conclusion, and each
final node for a category or option outcome. The DT method
has the benefit of making the decision path from the root node
to the terminal node very obvious to the user. It is also possible
to interpret the model. Using a decision tree approach is a
breeze whether data is numerical or categorical, and it even
works with missing values to a certain degree. What's more, it
requires very little data preparation. But when the decision
trees are complicated, the algorithm tends to overfit.

3) Random Forest

Random forest (RF) is a method that is based on statistics
learning theory. Bootstrap resampling is a novel technique that
takes a range of samples from the original data and uses them
to build a decision tree model. This makes the model stronger
and more accurate. The randomness of the RF approach is its
distinguishing feature for avoiding overfitting; while training
each tree [23], a random number of features and samples are
selected, lowering the model's variability. One of the most
active subfields of bioinformatics and data mining right now
is random forest.

F. Deep Learning Algorithms

Recent advances in artificial intelligence, known as deep
learning, have made classical DNN obsolete in several
domains, such as picture recognition, data analysis [24], and
processing of time series data. Batteries can benefit from these
deep learning techniques for thermal management in order to
overcome the shortcomings of traditional methods for defect
diagnosis, numerical modelling of thermal behaviour, and
state prediction.

1) Convolutional Neural Network (CNN)

Recent advances in artificial intelligence, known as deep
learning, have outperformed the more traditional DNN in a
number of areas, including image identification, data analysis,
and processing of time series data [25]. Integrating these
recently created deep learning algorithms into battery thermal
management helps overcome the shortcomings of older
approaches to predicting battery states, defect diagnosis, and
numerical modelling of thermal behaviour. Research and
applications of CNNs have made it feasible to estimate the
spatial thermal parameters of batteries and battery states.
CNNs are highly effective at processing photos and
multidimensional data.

2) Recurrent Neural Network (RNN)

RNN is a DL model [26] to work with sequential data
capacity, placing the associations between the previous time
offers and the upcoming ones within a neural system. The
three main components of a regular RNN are the input,
hidden, and output layers. One sequence element at a time is
fed into the hidden layer of an RNN, which processes it and
then utilises its output as extra input for the next element in
the sequence. The RNN takes into account both the present
and past aspects of the sequence while making predictions.
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Despite its great abilities to solve time series issues, RNN
tends to lose feature of the previous sequences as more time
steps are added.

3) Residual Neural Network (ResNet)

ResNet is an additional deep learning method that builds
upon CNN. The CNN's signals go straight from input to output
after incorporating residual modules, which causes the
network to go through one or more layers [27]. This can be
used to address frequent problems like vanishing and
exploding gradients, and also the decline in performance that
is often experienced when training deep network (the effect of
adding more layers to the model reduces its effectiveness). As
a result, ResNet makes DL models more efficient and stable.
Nowadays, ResNet is employed for deeper network and
feature recognition tasks that are more complicated.

IV. PARAMETER CONTROL OF THERMAL TREATMENTS

Through gifted parameters of Thermal Treatments, the
harmonious operation conditions: temperature, heating rate,
residence time, pressure, and oxidizing atmosphere of
thermochemical operation, like pyrolysis, gasification, and
combustion, are operated in such a way as to guarantee
optimal performance and product quality. Proper management
of these parameters defines reaction routes, reaction
efficiency, reaction energy output, and emission properties.
High-level monitoring and control measures allow operating
the processes stably, achieve energy savings, minimize the
formation of pollutants, and flexible adjustment to the changes
in the properties of the feedstock, making the control of
parameters a key to the safe and efficient application of
thermal treatment methods.

G. Thermochemical Treatment Technologies

There are a number of thermal processes that can be
employed as substitutes for more conventional methods of
dealing with biomass and municipal solid waste. These
processes guarantee the production of heat, fuels, and
electricity, but they also come with their fair share of
drawbacks. The main distinction between these systems is the
concentration of oxygen at the input. It enters the power plants
through the reactors, generates separate thermal pathways,
and ultimately impacts the fuels and harmful gaseous
emissions that come out of them.

1) Pyrolysis

Thermal decomposition of sewage sludge in pyrolysis
reactions occurs in an oxygen-free environment, which yields
economically viable products such as biochar, bio-oil, and
synthesis gas (the proportion of which varies with the
pyrolysis route selected), while reducing carbon dioxide
emissions [28]. The percentage composition of products
created during pyrolysis is primarily affected by three primary
process parameters: heating rate, temperature, and residence
duration. In addition to playing a role in the reactor's geometry
and supply system, they are depending on the physical and
chemical interactions that make up this intricate process. The
assessment of secondary factors, like particle size and
pressure, aids in the prevention of equipment corrosion, which
reduces its useful life.

2) Gasification

Gasification offers a number of different modes of
operation; it takes renewable inputs and converts them into
fossil fuels by chemical reactions with low degrees of
oxidation in different reactor building configurations. The
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integration of biological pathways is the subject of extensive
investigation into the validation of technology-enabled
concurrent processes with the goals of increased yields and
decreased pollution emissions. By using trash as a raw
material in thermochemical processes, the aforementioned
technologies achieve an average energy efficiency of 30%.
Catalysts can be used to produce power and a wide range of
various products with different economic values, including
fuels, renewable gases, and chemicals [29]. Accordingly,
these processes can enhance the global yield rate and provide
additional chances for scale benefits in the long term,
depending on the demand for each product created in the plant
and its demand in the national or worldwide market.

3) Combustion

A key component of combustion is the automation of the
flow, which minimises the mechanical use of parts while
connecting electrical power from sensors, the temperature of
the exit gas, and the volumetric concentration of each gas. The
chemical percentage of hydrogen is typically measured by
these sensors, which provide us the data needed to show the
relationship between thermal activities such as electricity
generation, gas cooling, and gas separation [30].

H. Important Features for Thermal Power Generation

The successful operation of thermal power production,
which involves transforming heat power into electrical
energy, depends on several characteristics: A heat source is an
energy source that is consistent and dependable, such as coal,
natural gas, or renewable energy sources like solar or
geothermal power; System cooling: efficient system cooling
prevents overheating and guarantees operational efficacy;
control systems: these systems ensure that all the critical
parameters are set up to run securely and efficiently through
accurate monitoring and control.

1) Temperature influence on thermal generation

Catalyst conversion of carbon from inserted biomasses can
be enhanced by utilizing catalysts such as calcined dolomite,
which can reduce tar content while increasing synthesis gas
concentration. Improved efficiency in thermal cracking allows
for the increased utilization of solids and liquids in two-stage
pyrolysis reactors [31]. Starting at 500 °C, the hydrogen and
carbon monoxide contents, with the dry gas yield rising to the
850 °C range, are all possible.

2) Constant Pressure Importance

The natural state of the gases and residues, determined by
their average molecular weight, is stabilized by keeping the
pressure constant or linear in gasification and pyrolysis [32].
This facilitates condensation and cools the generated gas to an
ideal temperature for usage in internal combustion engines,
which, with the help of increased load constants and a partial
loss of heat during combustion, transform mechanical rotation
into electrical energy.

3) Heating Rate on Thermal Generation

The concentration of carbon monoxide increases at
temperatures exceeding 550 °C when the heating rate is
maintained at 10 °C/min and carbon dioxide serves as the
reactive medium gas. Reduced tar production is a result of the
breakdown of more volatile chemicals at higher temperatures.
Raising the heating rate, usually between 15 and 30 degrees
Celsius per minute, is a frequent approach in industrial scale
gas product and bio-oil extraction to maximise production.
This makes sense because the temperature changes quickly
and greatly, hitting its best range between 500 and 800 degrees
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Celsius [33]. It also helps to raise the energy density of the
synthesis gas in models that use standard and slow pyrolysis
technology.

4) Time Importance in Thermal Power Plants

The processes for starting and stopping a thermal power
plant are distinct and time-consuming. The plant's ability to
respond quickly to changes in demand may be affected by its
start-up timings, whereas shutdown durations can be
important for maintenance and other operational reasons. To
maintain a steady and dependable power supply, it is critical
to handle these times effectively [34]. Regular maintenance is
essential for thermal power plants to ensure optimal operation
and prevent failure. When parts wear out, when to replace
them, and how reliable the plant is as a whole are all factors in
the planning of maintenance schedules. Planning such repair
tasks during periods of low demand can help mitigate the
effects of power outages.

V. LITERATURE REVIEW

This review summarizes the latest developments in data
center cooling and intelligent optimization with a focus on the
digital twin synchronization, the control using machine
learning and reinforcement learning, and
liquid/immersion/hybrid cooling to enhance efficiency,
reliability, scalability, and sustainability in a wide range of
deployment environments.

Rinaldi et al. (2025) provided a thorough analysis of the
challenges associated with keeping digital twins of data
centres connected to the edge in smart city settings in sync
with one another. The study examines essential factors
affecting synchronization accuracy and reliability, identifies
significant bottlenecks, and suggests strategies to alleviate
their impact. The results aid in the creation of effective
synchronization mechanisms, facilitating the implementation
of dependable digital twin systems [35].

Chen et al. (2025) introduced a novel method to predict
energy efficiency in data center cooling systems, combining
feature selection with a deep learning model. The approach
uses a three-step feature selection process—mRMR,
XGBoost, and NSGA-II—to optimize input features and
hyperparameters, enhancing accuracy while minimizing
sensor data requirements. The resulting deep neural network
(DNN) processes time-series data without steady-state
assumptions [36].

See et al. (2024) aimed to bring liquid immersion cooling
technology into client/edge desktop segments, with the intent
of miniaturization without trading off the performance. A self-
contained liquid immersion cooling approach has been

developed for desktop/IOT systems. The system chassis is
designed with compartmentalization as a standalone form
factor system. The heat source distribution, liquid flow, and
the liquid cooling heat sink have been optimized. The
prototyped solution has demonstrated a cooling capability of
650W, showing a path for Intel® Xeon® Scalable Processors
family CPUs to get into a Small Form Factor (SFF) PC [37].

Mebratu et al. (2023) developed a framework that utilises
Reinforcement Learning (RL) to aid in decision-making. This
methodology is based on the Markov Decision Process (MDP)
and the contextual bandits approach. Agents, states, rewards,
actions, and environments make up the RL algorithm. In this
scenario, the agent (learner) keeps tabs on the state of the
liquid cooling system, makes a decision, and then watches the
outcome of that decision. To learn how to make judgements
based on the current status of the system, the agent trains on a
variety of physical and virtual data that depicts the
environment of the liquid cooling system. For example, it
learns to recognize when a leak has occurred [38].

Chen et al. (2023) highlighted the design of Intel's Open
IP immersion cooling reference system, which incorporates a
modular layout for the server node, coolant distribution unit,
and immersion tank. A data centre that is better equipped to
support itself can be created using this layout. Analysis and
evaluation of system architectural originality, design
optimization, experimental verification and validation
outcomes, and reductions in both operational and embodied
carbon footprints are conducted. For the design of cloud and
edge scalable immersion cooling systems, key lessons learnt
in engineering practice are a great resource [39].

Guo et al. (2022) unveiled a state-of-the-art Xeon Scalable
Processor edge server for outdoor use, utilizing a hybrid
cooling method that combines refrigeration with inner and
outer circulation mechanisms to cool two layers of air. This
hybrid cooling solution was created to support the
redeployment of IT devices or components that have a
working temperature restriction of 5~35°C in a data center or
5~45°C in an HTA data center. In terms of energy efficiency
and the dependability of edge servers, it is perfect [40].

Table 1 summarizes recent studies in data center
optimization and cooling from a variety of disciplines; it
describes the advantages of digital twins, machine learning,
and reinforcement learning in terms of reliability, energy
efficiency, scalability, and sustainability; and it describes the
notion of liquid, immersion, and hybrid cooling systems; it
also identifies the main obstacles in the areas of
synchronization, real-time control, deployment limits, and
carbon reduction.

TABLE L. SUMMARY OF RECENT STUDIES ON PREDICTIVE COOLING IN DATA CENTERS
Reference Domain Cooling System Optimization Strategy Deployment Context Challenges
Rinaldi et al. | Smart cities, edge- | Digital twin— | Time synchronization analysis | Edge data centers in | Synchronization accuracy,
(2025) enabled data centers | assisted cooling | and mitigation strategies smart city environments | latency, reliability
systems bottlenecks
Chen et al. | Data center energy | Data center | Feature selection (mRMR, | Large-scale data centers | High sensor dependency,
(2025) management cooling systems XGBoost, NSGA-II) with DNN- dynamic operating
based prediction conditions
See et al. | Edge computing, | Liquid immersion | Thermal design optimization | Client/edge desktops and | Miniaturization, thermal
(2024) desktop/IoT cooling (heat source layout, liquid flow, | SFF systems density, form  factor
systems heat sink design) constraints
Mebratu et | Intelligent cooling | Liquid cooling | Reinforcement learning (MDP, | Simulated and physical | Real-time state estimation,
al. (2023) control systems contextual bandits) for anomaly | liquid-cooled leak detection accuracy
detection environments
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Chen et al. | Sustainable data | Immersion liquid | Modular system architecture | Cloud and edge data | Carbon footprint reduction,

(2023) centers cooling and design optimization centers scalability, system
integration

Guo et al. | Edge computing | Hybrid air cooling | Two-layer air circulation and | Outdoor edge servers, | Thermal reliability, energy

(2022) infrastructure with refrigeration hybrid cooling optimization extended  temperature | efficiency in HTA
environments conditions

VI. CONCLUSION AND FUTURE WORK

Hyperscale and edge data centers, which use immersion
cooling, have been mushrooming recently, with the latter
seeing particularly quick expansion. The location, footprint,
design cost, PUE objective, and other considerations of an
immersion cooling data center's system architecture can differ.
At the same time, in this age of sustainability, computers are
once again measured by their ability to generate more power
and better performance in a way that is orientated towards the
circular economy, with the end objective of producing no net
carbon emissions. This paper has discussed the most modern
cooling technologies and intelligent control measures that are
intended to solve the increasing thermal and energy issues in
the present-day data center and thermal power systems.
Cooling solutions of liquid, air, immersion, spray, and hybrid
were reviewed and optimization tools of PID, model
predictive control, and RL were distinguished with their
respective advantages and shortcomings in operating in
various conditions. The combination of Al, such as ML and
DL, proves a great potential of predictive cooling, real-time
adaptation of the system, and increased energy efficiency.
Besides, the discussion of parameter control in
thermochemical treatment processes: pyrolysis, gasification,
and combustion indicate the importance of high accuracy of
the temperature, pressure, heating rate, and residence time in
the maintenance of steady operation and maximum energy
production.

The aim of future work should be to create the unified Al-
based control frameworks like introducing digital twins, real-
time sensing, and adaptive learning to cooling and
thermochemical systems. The focus on scalability, carbon-
conscious optimization, and validation of operations in
practice will additionally increase sustainability and resilience
in operations.
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