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Abstract—Increasing energy consumption and thermal 

concentration in current data centers and thermal power 

systems necessitates a high level of cooling technologies and 

intelligent control measures in these systems to attain efficiency, 

reliability and sustainability. Modern data center cooling 

systems are covered in this paper. These systems include liquid, 

air, immersion, spray, and hybrid options. Optimization 

techniques offered include PID control, model predictive 

control, and reinforcement learning. Plus, it delves into how 

ML, DL, and RL (reinforcement learning) may revolutionize 

cooling prediction, real-time adaptability, and energy 

optimization. The article also delves into the topic of parameter 

control in thermochemical treatment processes, including 

gasification, combustion, and pyrolysis, covering topics like the 

impact of pressure, heating rate, residence time, and 

temperature on performance and energy output. The paper 

illuminates both AI-based and data-based solutions to the better 

thermal management, emissions cuts, stronger robustness, and 

sustainable operation. 

Keywords—Data center cooling, Intelligent thermal management, 

Liquid and immersion cooling, Predictive cooling, Optimization 

control strategies, Thermochemical treatments. 

I. INTRODUCTION 

The widespread adoption of smart devices and sensors has 
been accelerated by the digitisation of services and is now 
pervasive in many different industries, including 
transportation, healthcare, sports, and beyond. Internet of 
Things (IoT) [1][2] is the principal technology behind this 
change; it establishes a wireless network of diverse items, 
such as sensors, vehicles, and home appliances. Cloud 
computing and edge computing are two examples of third-
party computers that receive and aggregate data; the latter 
allows for more complicated analysis to be performed 
remotely. By bringing the processing power closer to the 
user's location, edge computing [3] reduces latency and 
improves performance. An additional use for it is as an 
intermediate layer, which distributes resources by splitting up 
computationally intensive jobs among several nodes. One 
benefit of edge computing is the assurance of user privacy 
provided by processing sensitive information locally, 
independent of the cloud. In addition to lowering transmission 
bandwidth and operational expenses, the tiny data volume 
being transmitted also helps. The extremely demanding 
processing time requirements of real-time systems often 
necessitate the use of edge computing. These systems are 
commonly found in industrial and security applications. 
Topical and quick actions of rescue workers are required in 
the critical situations, when many people are involved, e.g. in 
the case of emergency in high-rise buildings [4]. A framework 

based on IoT [5] has been created to deal with monitoring 
various environmental parameters and informing the rescuers 
on whether thresholds are crossed and hence the usefulness of 
edge computing [6] to locally process the information and 
obtain real-time alerts and enhance responsiveness.  

Data Centres are the basis of digital technologies in the 
energy sphere, which makes it possible to conduct advanced 
analytics, optimization, and automation [7]. The move of the 
traditional data centre design to the more dynamic and 
efficient project is becoming a critical issue in the current IT 
environment. The traditional data centre, which typically 
follows a predetermined paradigm for resource allocation and 
construction, ought to be better prepared to handle the ever-
changing requirements of contemporary workloads. A great 
increase in the demand for data production and storage has 
resulted from the proliferation of digital technologies in many 
sectors, including the energy industry, e-commerce, cloud 
computing, telecommunications, and the Internet of Things 
(IoT) [8][9]. The need for data centres to support the 
expanding digital infrastructure has been driven up by this 
factor. However, data centres are power hogs since they 
require a steady stream of electricity to operate their 
equipment and maintain optimal storage conditions for data. 
There are growing worries about the impact of data centres on 
environmental sustainability because to their high emissions 
of greenhouse gases and negative impacts on water resources 
and air quality. Hence, data centres must be developed and 
operated in a sustainable manner so as to have minimal 
environmental effects and as much energy efficiency as 
possible. 

Intelligent system design is required to tackle the difficult 
problem of reducing data centre energy usage [10] while 
preserving the requirements of compute resources. When 
dealing with a live data centre, the difficulty level rises even 
further. A temperature model that takes into account both 
internal and external factors, such as server energy 
consumption and the state of the cooling system, can estimate 
the temperature within the cooling system's hot corridor and 
help reach this goal without negatively impacting the compute 
resources' working conditions [11]. Optimising architectural 
design schemes and equipment control schemes are two main 
ways to increase the efficiency of data centre cooling systems. 
Coatings that improve indoor air quality are one example of 
how architectural design schemes are being optimised [12]. 
Data centre cooling efficiency and airflow homogeneity can 
be enhanced through duct network design optimisation, for 
instance. A new control mechanism is required for the data 
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centre’s cooling systems so that they may be fine-tuned to 
reduce energy consumption and increase operating efficiency. 

Data Centre (DC) operations are constantly being 
optimised and automated with the help of models from AI and 
ML [13]. More and more DCs are turning to AI and ML apps 
to streamline and automate their processes. The use of AI and 
ML models is replacing traditional heuristics and technical 
solutions in DCs as they scale to meet ever-increasing 
demands. This has a major impact on plant performance 
modelling and efficiency improvement. Improving the 
accuracy of predictions is possible by utilising these powerful 
technologies across several layers, with a focus on information 
technology and cooling systems. Energy efficiency, cooling 
efficiency, resource allocation, problem detection, and many 
other operational optimisation and management tasks are all 
under their purview. Neural networks (both convolutional and 
recursive), LSTM, and GRUs (gated recurrent units) are the 
DL methods under scrutiny. Building energy performance 
prediction, simulation, control, and optimisation using 
machine learning and deep learning apps. Here is the energy 
distribution in data centres, as seen in Figure 1.  

 

Fig. 1. Schematic Diagram of Data Center Energy Distribution 

A. Structure of the Paper 

The paper is based on the following structure, Section II: 
reviews data center cooling technologies and optimization 
strategies. Section III refers to AI methods of predictive 
cooling. Section IV looks at the parameter control in thermal 
treatments in thermochemical. The literature evaluation is 
presented in Section V, and the paper is concluded with 
Section VI, which includes the main findings and areas for 
future study. 

II. COOLING TECHNOLOGIES AND OPTIMIZATION CONTROL 

STRATEGIES IN DATA CENTERS 

The cooling of electronic components in base station 
antennas and last-generation mobile telecommunication 
networks, energy consumption, and intelligent thermal 
management are all important areas for future study and 
development [14]. Over the past few years, thermal 
management in high-power integrated circuits (ICs) has been 
an important field of research, especially with increasing 
demands on industries needing more efficient cooling 
systems, including the telecommunications and data centers 
industries. The data center components are illustrated in 
Figure 2.  

 

Fig. 2. Components of Data Center Energy Consumption 

B. Liquid Cooling Technologies in Data Centers 

The high thermal conductivity and specific heat capacity 
of liquids are used in liquid cooling technology to effectively 
get rid of heat and keep the equipment within a safe working 
temperature range, as shown in Figure 3. Using a sealed 
system to circulate a coolant, liquid cooling technology 
efficiently manages the heat produced by data centre 
equipment. First, there's the cooling water system, which uses 
towers to lower the water's temperature and dissipate the 
excess heat into the surrounding environment. The third stage 
involves transferring the cooled water to the central 
distribution unit (CDU), which supplies further cooling 
systems directly connected to the equipment. The CDU serves 
as a hub for the coolant distribution process. Specialised 
cooling systems in the data center's server cabinets distribute 
the coolant evenly throughout the room. By soaking up the 
heat that the servers produce, the systems keep them at the 
ideal working temperatures. Pumping the heated coolant back 
to the CDU and then recirculating it to the cooling towers 
repeats the cycle.  

 

Fig. 3. Basic Mechanism of Liquid Cooling Technology 

1) Cold Plate Liquid Cooling 
Liquid cooling at the chip level is an indirect approach 

where it follows the heat dissipation process of components 
producing a lot of heat by mounting cold plates on server 
CPUs and GPUs. An eco-friendly characteristic is its ability 
to use warm water as a coolant for direct-to-chip cooling, 
which is one of its remarkable qualities. At 45 °C or higher, 
this method can produce waste heat from water. Front and 
centre, show a waste heat recovery tubes on the majority of 
commercial liquid cooling products [14]. Keep in mind that 
the CDU's primary and secondary sides are both capable of 
recovering waste heat.  
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2) Immersion Liquid Cooling 
The heat-emitting electronic components of an immersion 

liquid cooling system are submerged in a circulating coolant, 
resulting in a rapid heat exchange rate. The entire system is 
covered with a non-conductive coolant, such as mineral oil, 
silicone oil, or fluorinated fluids, while the IT equipment is in 
operation. The coolant's ability to undergo a phase transition 
during heat exchange is the defining characteristic of single-
phase versus two-phase immersion cooling. 

3) Spray Liquid Cooling 
In contrast to the two above systems, heat exchange is 

attained by directly spraying the coolant over electronic 
equipment using specially designed nozzles with the spray 
liquid cooling technology. The coolant is applied onto the 
electronic equipment or other heat-conducting material 
surface directly during spraying. The hot coolant is recovered 
by the return pipeline of the system and pumped back to the 
CDU to cool. The cooling tower, control distribution unit 
(CDU), liquid cooling pipeline, spray liquid cooling cabinet, 
and pipeline system are the typical components of this 
mechanism, which is known for its precise and efficient 
cooling process. Spray cooling can be used in many other 
applications with promising future prospects in the aerospace, 
biomedicine, and battery safety areas [15]. Ongoing 
developments are likely to make it more efficient and 
applicable, defeating the current technological limitations and 
broadening the range of its activities to more developed and 
compact electronics. 

C. Air Cooling Technologies in Data Centers 

Air conditioning methods utilise fans to facilitate the 
cooling of refrigerant within the condenser, with heat 
dissipation occurring directly into the ambient air, as depicted 
in Figure 4. By eliminating the need for cooling towers, 
pumps, and pipes, this approach may guarantee proper cooling 
operation in 24 out of 42 water-scarce settings, in comparison 
to water-cooled chiller systems. Because of its simplicity, 
dependability, and ease of maintenance, air-cooled chiller 
systems are extensively utilised in medium to large data 
centres. 

 

Fig. 4. Basic mechanism of air-cooling technology 

1) Direct Air Cooling 
Direct air cooling is simple and does not cost much 

especially in areas where the quality and the temperature of 
the ambient air are within the acceptable range of IT 
equipment operation [9]. Nonetheless, this approach is 
limited. It performs poorly in hot or polluted situations 
because its efficacy is significantly impacted by ambient air 
conditions. One other issue is the reliance on high-speed fans, 
which can generate a lot of noise—not ideal for data centres 
with a lot of users. Additionally, the system's cooling 

capability is limited compared to liquid cooling solutions due 
to air heat dissipation, making it less appropriate for extremely 
high-density configurations or high-performance computing 
(HPC) applications with a large heat load.  

2) Indirect Air Cooling 
Indirect air-cooling is a type of technology that removes 

heat by exchanging one medium with another by using a heat 
exchanger where typically the heat is removed by exchanging 
the hot equipment with water or coolant, which subsequently 
cools by exchange of heat through the air. Heat exchangers 
can be found in the data center in indirect air cooling systems 
[16], Indirect air-cooling is a type of technology that removes 
heat by exchanging one medium with another by using a heat 
exchanger where typically the heat is removed by exchanging 
the hot equipment with water or coolant, which subsequently 
cools by exchange of heat through the air. Heat exchangers 
can be found in the data center in indirect air cooling systems. 

3) Evaporate Cooling 
Cold air is created by absorbing heat as water evaporates; 

this process is known as evaporative cooling. By reducing the 
air temperature and increasing humidity, it achieves better 
thermal management. Evaporative cooling systems in 
environmentally conscious buildings use a combination of air 
cooling and natural evaporation to keep indoor temperatures 
tolerable while reducing the energy consumption of HVAC 
systems [17]. Even in extremely hot environments, this 
technology can significantly improve the system's efficiency 
and performance in terms of output. In extremely humid 
environments, evaporative cooling is nearly useless. The 
efficiency of this cooling method is highly dependent on the 
relative humidity of the surrounding air. The system also 
needs water supply that is constant and this may be a 
constraint in the scarcity of water in a region. The system 
should be regularly maintained to eliminate the possibility of 
mild and bacteria development and thereby impact the quality 
of air and efficiency of the system. 

D. Optimization Control Strategies for Cooling Systems in 

Data Centers 

Modern data centres rely heavily on the process of 
managing cooling systems to function. In addition to 
bolstering overall performance and dependability, this calls 
for the implementation of cutting-edge technology and 
methodologies to increase efficiency and decrease energy 
usage. Due to the inadequacy of the previous systems based 
on experience-based approaches, automation control 
strategies have emerged as a crucial instrument to deal with 
the increasing scale and complexity of data centres' operations 
[18]. Intelligent control system approaches utilise additional 
monitoring and automatic control to allow cooling equipment 
to be modified in real-time according to the actual thermal 
load. Not only can these techniques improve the system's 
intelligence and automation, but they also maximise 
operational efficiency and cost-effectiveness.   

1) PID Control 
The optimisation control of cooling systems in data centres 

often makes use of PID control. Stabilising operation levels at 
predetermined points is the primary goal of this widely used 
method, which is compatible with the majority of 
conventional cooling systems. Unfortunately, PID control has 
its limits when confronted with complicated and dynamic 
situations. One hundred years ago, PID technology was first 
created for processes with just one input and one output. 
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2) Model Predictive Control (MPC) 
MPC's unparalleled predictive and optimisation 

capabilities have garnered it widespread interest in data centre 
control and established it as a foundational technology for 
enhancing system performance in terms of responsiveness and 
efficiency. Creating predictive optimisation strategies to 
improve chilled water systems overall is a prime example of 
how MPC is expected to regulate and mediate the connection 
between system performance and energy efficiency. 

3) Reinforcement Learning 
This is an advanced intelligent control strategy, which is 

known as reinforcement learning (RL) and has shown a lot of 
potential in terms of adaptive adaptation and performance 
optimization. The RL methods have intensively been used to 
make data center and cooling systems more energy efficient 
and responsive, and have demonstrated significant potential in 
responding to complex and dynamic environments. 

III. AI TECHNIQUES FOR PREDICTIVE COOLING 

The AI technologies layer processes, improves, and digs 
deeper into the data and information received from the 
information analysis layer by using computers, tweaking 
hardware, and AI models. This aids in real-time dynamic 
control and makes judgements with better precision. For the 
data centre, this means smart management of the cooling 
system that makes the most efficient use of the available 
energy. By combining several AI models such as knowledge 
graphs, deep reinforcement learning, and generative AI, gain 
deep insights into the complex system's operational status and 
optimize it. 

E. Machine Learning Algorithms  

The algorithms of artificial intelligence began to thrive in 
the early 1950s, and scientists already theorized that it was 
possible to give machines the ability to reason logically, and 
they would become intelligent. This stage's notable 
accomplishments include, among others, the Logic Theorist 
and General Problem-Solving programs [19]. Advances in 
research, however, have shown that AI cannot be achieved 
through the application of logic alone. Following this, a 
plethora of expert systems were developed through the 
process of imparting information to computers [20]. But 
expert systems are confined in their application spectrum 
because of their complexity. A number of connectionisms 
based on neural networks and inductive learning systems 
based on logic have emerged in the last several decades, 
ushering in the era of learning machines in the field of 
artificial intelligence. The circumstances under which distinct 
ml algorithms perform optimally in diverse application 
contexts vary greatly, reflecting the recent growth of machine 
learning as a substantial academic area. 

1) Support Vector Machine (SVM) 
SVM is a ML model that excels in high-dimensional, 

nonlinear phenomena, small sample sizes, and adheres to the 
structural risk minimisation principle and the Statistical 
Learning Theory's dimension approach. Pattern recognition, 
regression modelling, and many more fields can benefit from 
it. This method is expressed as a problem of limited quadratic 
programming [21]. Traditional optimisation techniques 
effective for small-scale QP. However, this methodology 
suffers when the size of the training corpus increases, leading 
to sluggish training speed, complicated algorithm design, and 
decreased efficiency. Presently, training entails breaking 
down a big QP problem into smaller ones, solving each of 

those subproblems in turn until reaching a solution that is 
close to the original. 

2) Decision Tree 
The decision tree algorithm provides a framework for 

understanding hierarchical data structures, decision rules, and 
categorisation outputs. This algorithm is an example of 
inductive learning; it takes raw data and sorts it into trees, 
which can then represent unknown data in a predictive way. 
Where each internal node stands for a feature attribute test 
[22], each outward branch for the test's conclusion, and each 
final node for a category or option outcome. The DT method 
has the benefit of making the decision path from the root node 
to the terminal node very obvious to the user. It is also possible 
to interpret the model. Using a decision tree approach is a 
breeze whether data is numerical or categorical, and it even 
works with missing values to a certain degree. What's more, it 
requires very little data preparation. But when the decision 
trees are complicated, the algorithm tends to overfit.  

3) Random Forest 
Random forest (RF) is a method that is based on statistics 

learning theory. Bootstrap resampling is a novel technique that 
takes a range of samples from the original data and uses them 
to build a decision tree model. This makes the model stronger 
and more accurate. The randomness of the RF approach is its 
distinguishing feature for avoiding overfitting; while training 
each tree [23], a random number of features and samples are 
selected, lowering the model's variability. One of the most 
active subfields of bioinformatics and data mining right now 
is random forest. 

F. Deep Learning Algorithms 

Recent advances in artificial intelligence, known as deep 
learning, have made classical DNN obsolete in several 
domains, such as picture recognition, data analysis [24], and 
processing of time series data. Batteries can benefit from these 
deep learning techniques for thermal management in order to 
overcome the shortcomings of traditional methods for defect 
diagnosis, numerical modelling of thermal behaviour, and 
state prediction. 

1) Convolutional Neural Network (CNN) 
Recent advances in artificial intelligence, known as deep 

learning, have outperformed the more traditional DNN in a 
number of areas, including image identification, data analysis, 
and processing of time series data [25]. Integrating these 
recently created deep learning algorithms into battery thermal 
management helps overcome the shortcomings of older 
approaches to predicting battery states, defect diagnosis, and 
numerical modelling of thermal behaviour. Research and 
applications of CNNs have made it feasible to estimate the 
spatial thermal parameters of batteries and battery states. 
CNNs are highly effective at processing photos and 
multidimensional data. 

2) Recurrent Neural Network (RNN) 
RNN is a DL model [26] to work with sequential data 

capacity, placing the associations between the previous time 
offers and the upcoming ones within a neural system. The 
three main components of a regular RNN are the input, 
hidden, and output layers. One sequence element at a time is 
fed into the hidden layer of an RNN, which processes it and 
then utilises its output as extra input for the next element in 
the sequence. The RNN takes into account both the present 
and past aspects of the sequence while making predictions. 
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Despite its great abilities to solve time series issues, RNN 
tends to lose feature of the previous sequences as more time 
steps are added. 

3) Residual Neural Network (ResNet) 
ResNet is an additional deep learning method that builds 

upon CNN. The CNN's signals go straight from input to output 
after incorporating residual modules, which causes the 
network to go through one or more layers [27]. This can be 
used to address frequent problems like vanishing and 
exploding gradients, and also the decline in performance that 
is often experienced when training deep network (the effect of 
adding more layers to the model reduces its effectiveness). As 
a result, ResNet makes DL models more efficient and stable. 
Nowadays, ResNet is employed for deeper network and 
feature recognition tasks that are more complicated. 

IV. PARAMETER CONTROL OF THERMAL TREATMENTS 

 Through gifted parameters of Thermal Treatments, the 
harmonious operation conditions: temperature, heating rate, 
residence time, pressure, and oxidizing atmosphere of 
thermochemical operation, like pyrolysis, gasification, and 
combustion, are operated in such a way as to guarantee 
optimal performance and product quality. Proper management 
of these parameters defines reaction routes, reaction 
efficiency, reaction energy output, and emission properties. 
High-level monitoring and control measures allow operating 
the processes stably, achieve energy savings, minimize the 
formation of pollutants, and flexible adjustment to the changes 
in the properties of the feedstock, making the control of 
parameters a key to the safe and efficient application of 
thermal treatment methods. 

G. Thermochemical Treatment Technologies 

There are a number of thermal processes that can be 
employed as substitutes for more conventional methods of 
dealing with biomass and municipal solid waste. These 
processes guarantee the production of heat, fuels, and 
electricity, but they also come with their fair share of 
drawbacks. The main distinction between these systems is the 
concentration of oxygen at the input. It enters the power plants 
through the reactors, generates separate thermal pathways, 
and ultimately impacts the fuels and harmful gaseous 
emissions that come out of them. 

1) Pyrolysis 
Thermal decomposition of sewage sludge in pyrolysis 

reactions occurs in an oxygen-free environment, which yields 
economically viable products such as biochar, bio-oil, and 
synthesis gas (the proportion of which varies with the 
pyrolysis route selected), while reducing carbon dioxide 
emissions [28]. The percentage composition of products 
created during pyrolysis is primarily affected by three primary 
process parameters: heating rate, temperature, and residence 
duration. In addition to playing a role in the reactor's geometry 
and supply system, they are depending on the physical and 
chemical interactions that make up this intricate process. The 
assessment of secondary factors, like particle size and 
pressure, aids in the prevention of equipment corrosion, which 
reduces its useful life.  

2) Gasification 
Gasification offers a number of different modes of 

operation; it takes renewable inputs and converts them into 
fossil fuels by chemical reactions with low degrees of 
oxidation in different reactor building configurations. The 

integration of biological pathways is the subject of extensive 
investigation into the validation of technology-enabled 
concurrent processes with the goals of increased yields and 
decreased pollution emissions. By using trash as a raw 
material in thermochemical processes, the aforementioned 
technologies achieve an average energy efficiency of 30%. 
Catalysts can be used to produce power and a wide range of 
various products with different economic values, including 
fuels, renewable gases, and chemicals [29]. Accordingly, 
these processes can enhance the global yield rate and provide 
additional chances for scale benefits in the long term, 
depending on the demand for each product created in the plant 
and its demand in the national or worldwide market. 

3) Combustion 
A key component of combustion is the automation of the 

flow, which minimises the mechanical use of parts while 
connecting electrical power from sensors, the temperature of 
the exit gas, and the volumetric concentration of each gas. The 
chemical percentage of hydrogen is typically measured by 
these sensors, which provide us the data needed to show the 
relationship between thermal activities such as electricity 
generation, gas cooling, and gas separation [30].  

H. Important Features for Thermal Power Generation 

The successful operation of thermal power production, 
which involves transforming heat power into electrical 
energy, depends on several characteristics: A heat source is an 
energy source that is consistent and dependable, such as coal, 
natural gas, or renewable energy sources like solar or 
geothermal power; System cooling: efficient system cooling 
prevents overheating and guarantees operational efficacy; 
control systems: these systems ensure that all the critical 
parameters are set up to run securely and efficiently through 
accurate monitoring and control. 

1) Temperature influence on thermal generation 
Catalyst conversion of carbon from inserted biomasses can 

be enhanced by utilizing catalysts such as calcined dolomite, 
which can reduce tar content while increasing synthesis gas 
concentration. Improved efficiency in thermal cracking allows 
for the increased utilization of solids and liquids in two-stage 
pyrolysis reactors [31]. Starting at 500 °C, the hydrogen and 
carbon monoxide contents, with the dry gas yield rising to the 
850 °C range, are all possible. 

2) Constant Pressure Importance 
The natural state of the gases and residues, determined by 

their average molecular weight, is stabilized by keeping the 
pressure constant or linear in gasification and pyrolysis [32]. 
This facilitates condensation and cools the generated gas to an 
ideal temperature for usage in internal combustion engines, 
which, with the help of increased load constants and a partial 
loss of heat during combustion, transform mechanical rotation 
into electrical energy.  

3) Heating Rate on Thermal Generation 
The concentration of carbon monoxide increases at 

temperatures exceeding 550 °C when the heating rate is 
maintained at 10 °C/min and carbon dioxide serves as the 
reactive medium gas. Reduced tar production is a result of the 
breakdown of more volatile chemicals at higher temperatures. 
Raising the heating rate, usually between 15 and 30 degrees 
Celsius per minute, is a frequent approach in industrial scale 
gas product and bio-oil extraction to maximise production. 
This makes sense because the temperature changes quickly 
and greatly, hitting its best range between 500 and 800 degrees 
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Celsius [33]. It also helps to raise the energy density of the 
synthesis gas in models that use standard and slow pyrolysis 
technology. 

4) Time Importance in Thermal Power Plants 
The processes for starting and stopping a thermal power 

plant are distinct and time-consuming. The plant's ability to 
respond quickly to changes in demand may be affected by its 
start-up timings, whereas shutdown durations can be 
important for maintenance and other operational reasons. To 
maintain a steady and dependable power supply, it is critical 
to handle these times effectively [34]. Regular maintenance is 
essential for thermal power plants to ensure optimal operation 
and prevent failure. When parts wear out, when to replace 
them, and how reliable the plant is as a whole are all factors in 
the planning of maintenance schedules. Planning such repair 
tasks during periods of low demand can help mitigate the 
effects of power outages.  

V. LITERATURE REVIEW 

This review summarizes the latest developments in data 
center cooling and intelligent optimization with a focus on the 
digital twin synchronization, the control using machine 
learning and reinforcement learning, and 
liquid/immersion/hybrid cooling to enhance efficiency, 
reliability, scalability, and sustainability in a wide range of 
deployment environments. 

Rinaldi et al. (2025) provided a thorough analysis of the 
challenges associated with keeping digital twins of data 
centres connected to the edge in smart city settings in sync 
with one another. The study examines essential factors 
affecting synchronization accuracy and reliability, identifies 
significant bottlenecks, and suggests strategies to alleviate 
their impact. The results aid in the creation of effective 
synchronization mechanisms, facilitating the implementation 
of dependable digital twin systems [35]. 

Chen et al. (2025) introduced a novel method to predict 
energy efficiency in data center cooling systems, combining 
feature selection with a deep learning model. The approach 
uses a three-step feature selection process—mRMR, 
XGBoost, and NSGA-II—to optimize input features and 
hyperparameters, enhancing accuracy while minimizing 
sensor data requirements. The resulting deep neural network 
(DNN) processes time-series data without steady-state 
assumptions [36]. 

See et al. (2024) aimed to bring liquid immersion cooling 
technology into client/edge desktop segments, with the intent 
of miniaturization without trading off the performance. A self-
contained liquid immersion cooling approach has been 

developed for desktop/IOT systems. The system chassis is 
designed with compartmentalization as a standalone form 
factor system. The heat source distribution, liquid flow, and 
the liquid cooling heat sink have been optimized. The 
prototyped solution has demonstrated a cooling capability of 
650W, showing a path for Intel® Xeon® Scalable Processors 
family CPUs to get into a Small Form Factor (SFF) PC [37].   

Mebratu et al. (2023) developed a framework that utilises 
Reinforcement Learning (RL) to aid in decision-making. This 
methodology is based on the Markov Decision Process (MDP) 
and the contextual bandits approach. Agents, states, rewards, 
actions, and environments make up the RL algorithm. In this 
scenario, the agent (learner) keeps tabs on the state of the 
liquid cooling system, makes a decision, and then watches the 
outcome of that decision. To learn how to make judgements 
based on the current status of the system, the agent trains on a 
variety of physical and virtual data that depicts the 
environment of the liquid cooling system. For example, it 
learns to recognize when a leak has occurred [38]. 

Chen et al. (2023) highlighted the design of Intel's Open 
IP immersion cooling reference system, which incorporates a 
modular layout for the server node, coolant distribution unit, 
and immersion tank. A data centre that is better equipped to 
support itself can be created using this layout. Analysis and 
evaluation of system architectural originality, design 
optimization, experimental verification and validation 
outcomes, and reductions in both operational and embodied 
carbon footprints are conducted. For the design of cloud and 
edge scalable immersion cooling systems, key lessons learnt 
in engineering practice are a great resource [39]. 

Guo et al. (2022) unveiled a state-of-the-art Xeon Scalable 
Processor edge server for outdoor use, utilizing a hybrid 
cooling method that combines refrigeration with inner and 
outer circulation mechanisms to cool two layers of air. This 
hybrid cooling solution was created to support the 
redeployment of IT devices or components that have a 

working temperature restriction of 5~35℃ in a data center or 

5~45℃ in an HTA data center. In terms of energy efficiency 

and the dependability of edge servers, it is perfect [40]. 

Table I summarizes recent studies in data center 
optimization and cooling from a variety of disciplines; it 
describes the advantages of digital twins, machine learning, 
and reinforcement learning in terms of reliability, energy 
efficiency, scalability, and sustainability; and it describes the 
notion of liquid, immersion, and hybrid cooling systems; it 
also identifies the main obstacles in the areas of 
synchronization, real-time control, deployment limits, and 
carbon reduction.

TABLE I.  SUMMARY OF RECENT STUDIES ON PREDICTIVE COOLING IN DATA CENTERS 

Reference Domain Cooling System Optimization Strategy Deployment Context Challenges 

Rinaldi et al. 
(2025) 

Smart cities, edge-
enabled data centers 

Digital twin–
assisted cooling 

systems 

Time synchronization analysis 
and mitigation strategies 

Edge data centers in 
smart city environments 

Synchronization accuracy, 
latency, reliability 

bottlenecks 

Chen et al. 
(2025) 

Data center energy 
management 

Data center 
cooling systems 

Feature selection (mRMR, 
XGBoost, NSGA-II) with DNN-

based prediction 

Large-scale data centers High sensor dependency, 
dynamic operating 

conditions 

See et al. 

(2024) 

Edge computing, 

desktop/IoT 
systems 

Liquid immersion 

cooling 

Thermal design optimization 

(heat source layout, liquid flow, 
heat sink design) 

Client/edge desktops and 

SFF systems 

Miniaturization, thermal 

density, form factor 
constraints 

Mebratu et 

al. (2023) 

Intelligent cooling 

control 

Liquid cooling 

systems 

Reinforcement learning (MDP, 

contextual bandits) for anomaly 
detection 

Simulated and physical 

liquid-cooled 
environments 

Real-time state estimation, 

leak detection accuracy 
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Chen et al. 
(2023) 

Sustainable data 
centers 

Immersion liquid 
cooling 

Modular system architecture 
and design optimization 

Cloud and edge data 
centers 

Carbon footprint reduction, 
scalability, system 

integration 

Guo et al. 

(2022) 

Edge computing 

infrastructure 

Hybrid air cooling 

with refrigeration 

Two-layer air circulation and 

hybrid cooling optimization 

Outdoor edge servers, 

extended temperature 
environments 

Thermal reliability, energy 

efficiency in HTA 
conditions 

VI. CONCLUSION AND FUTURE WORK 

Hyperscale and edge data centers, which use immersion 
cooling, have been mushrooming recently, with the latter 
seeing particularly quick expansion. The location, footprint, 
design cost, PUE objective, and other considerations of an 
immersion cooling data center's system architecture can differ. 
At the same time, in this age of sustainability, computers are 
once again measured by their ability to generate more power 
and better performance in a way that is orientated towards the 
circular economy, with the end objective of producing no net 
carbon emissions. This paper has discussed the most modern 
cooling technologies and intelligent control measures that are 
intended to solve the increasing thermal and energy issues in 
the present-day data center and thermal power systems. 
Cooling solutions of liquid, air, immersion, spray, and hybrid 
were reviewed and optimization tools of PID, model 
predictive control, and RL were distinguished with their 
respective advantages and shortcomings in operating in 
various conditions. The combination of AI, such as ML and 
DL, proves a great potential of predictive cooling, real-time 
adaptation of the system, and increased energy efficiency. 
Besides, the discussion of parameter control in 
thermochemical treatment processes: pyrolysis, gasification, 
and combustion indicate the importance of high accuracy of 
the temperature, pressure, heating rate, and residence time in 
the maintenance of steady operation and maximum energy 
production. 

The aim of future work should be to create the unified AI-
based control frameworks like introducing digital twins, real-
time sensing, and adaptive learning to cooling and 
thermochemical systems. The focus on scalability, carbon-
conscious optimization, and validation of operations in 
practice will additionally increase sustainability and resilience 
in operations. 
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