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Abstract—Important infrastructures like water treatment and smart grids rely heavily on cyber-physical systems (CPS), which are
increasingly vulnerable to new and developing threats. The advent of Intrusion Detection Systems (IDS) tailored to CPS design has
become one of the essential tactics for safeguarding them, despite the fact that traditional security measures like firewalls and
encryption do not function well enough with CPS architecture. The study article presents a deep learning (DL) approach to an IDS
to identify security attacks in a network of resource-constrained CPS using the CICIDS2017 database. Some preprocessing
operations, such as cleaning, transformation, one-hot encoding, outliers removal using the Z-score method, and class balancing using
SMOTE, were performed on the dataset. The tasks of dimensionality reduction and feature selection were performed with the help
of Principal Component Analysis (PCA). The binary and multi-class intrusion detection was done with a built and tested six-layer
Deep Neural Network (DNN) and a Convolutional Neural Network (CNN). The DNN could obtain 99.7% and the CNN 99.5%. The
two models were good generalizers, with low overfitting, and high precision (PRE), recall (REC), and F1-Score (F1). Comparative
performance analysis of the existing methods and the suggested models proved that the suggested models possess a higher detection
accuracy and can be utilized much faster, hence, they may be an appropriate option when it comes to the deployment of a strong and
scalable IDS in a cyber-physical environment.

Keywords—Cyber Physical Systems (CPSs), Deep Learning, Intrusion Detection System (IDS), Anomaly Detection, Water Treatment

Systems.

I. INTRODUCTION

To identify and detect intrusion attacks, cybersecurity [1]
systems use the Intrusion Detection System (IDS), a potent
tool. There is a greater chance of intrusion attempts in
different forms as data generation increases [2]. One of the
biggest issues nowadays is the necessity of maintaining strong
cybersecurity, since the variety of networking technologies is
increasing quickly, and cyber-attacks are becoming more
common [3]. In cybersecurity, one of the most crucial aspects
is identifying and stopping malicious behavior and gaining
access to computer networks [4]. Monitoring network activity
and spotting any security breaches requires an intrusion
detection system, or IDS. Traditional IDS systems primarily
rely on signature-based methods, making it difficult to detect
new and complex threats.

The link of a physical and cyber system where data and
information are exchanged in real-time is known as a cyber-
physical system (CPS) [5][6]. CPS has a lot of economic
potential and is crucial in the IoT-based sector. With its
foundation in the IoT, CPS takes into account how physical,
network, and computer systems interact [7]. It has evolved
into the Internet of Cyber-Physical Things, which offers a
variety of services, including smart homes, smart cities, e-
commerce, and e-health.

The resource-constrained environment in Internet of
Things (IoT) security poses significant challenges, including
but not limited to data encryption, privacy preservation,
vulnerabilities, threats, attacks, and limits, despite the
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existence of several Internet security solutions. For these
privacy and security concerns related to the IoT to be resolved,
it is essential to develop appropriate technologies for
environments with limited resources.

The Al algorithms may have their own set of vulnerabilities
[8]They may also be the answer to this problem by keeping
an eye on network traffic in an industrial environment.
Regular updates are necessary for these systems, especially
those that are connected to an IIoT infrastructure, because
unknown attack signatures can greatly impact an IDS. This is
how an Al-based IDS differs from a traditional IDS system
[9]. It is impossible for traditional intrusion detection
methods, including signature-based detection systems, to
detect newly launched attacks (zero-day attacks) or to adjust
to changing attack tactics. Therefore, ML and DL have
become important topics in intrusion detection system
network security research [10][11]. The computing power
required for DL models is often considerable [12], especially
when it comes to graphics processing units (GPUs) or
transpose units (TPUs), which have a number of downsides,
such as expensive training, subpar performance in real-time,
and a heavy communication burden associated with
centralized models. Such issues can jeopardize the disclosure
of private data and are particularly troublesome in edge
computing.

A. Motivation

The complexity of CPS and IoT networks has exposed
them to increasingly advanced cyber threats. Conventional
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signature-based IDS techniques are incapable of identifying
new attack types or adapting to the evolving threat landscape.
The research presented here aims to create smart, energy-
efficient DL-driven IDS models using DNN and CNN to
achieve results very close to the truth, rapid detection, and the
ability to be extended to environments with limited resources
in CPS. The following are the primary findings of the
research:

e Designing a DL-driven IDS that uses the
CICIDS2017 dataset for security in cyber-physical
systems.

e Performing thorough data pre-treatment procedures,
including data transformation, encoding, cleaning,
and Z-score outlier detection.

e Using SMOTE, can improve the model training
process and address the issue of class imbalance.

e Data dimensionality reduction and effective feature
selection are accomplished by using PCA.

e Convolutional and deep neural networks (CNNs and
DNNs, respectively) were used to develop IDS
models.

e Model performance evaluation using REC, ACC,
PRE, F1, and loss metrics to choose the best network
model for intrusion detection.

B. Organization of the Research

This research is organized in the following way: Section II
covers literature related to IDS in resource-constrained CPS,
Section III explains the methodology, i.c., dataset, pre-
processing, and model implementation, Section IV shows the
comparative analysis and experimental results, and Section V
conclusion the study and suggests avenues for more
investigation.

II.  RELATED WORK

This study's main aim is to analyze panel study data about
IDS in CPS with limited resources. The research domain and
the methodological framework of this study were influenced
by the findings of this analysis. A summary of the examined
research is represented by Table I, which includes the aspects
of the review, focus of the study, models and techniques
applied, datasets, main findings, and comments.

Ravi Kumar et al. (2025) suggested a HEGSO algorithm
is used to choose which features to use in the XAIID-SCPS
method. The usage of an Improved Elman Neural Network
(IENN) architecture for parameter standardization and the
Enhanced Fruitfly Optimization (EFFO) approach for
intrusion detection. To make the black-box technique simpler
to comprehend and explain, the XAIID-SCPS method
additionally integrates the XAI methodology with Local
Interpretable Model-Agnostic explanation (LIME). This
makes it possible to accurately define attacks. There is a

TABLE L

98.88% chance that the XAIID-SCPS technique work better
than other methods, as shown by the higher simulation
numbers [13].

Denis and Di Pietro (2025) they evaluated their framework
with a use case focusing on authentication at the physical layer
of USB devices—these latter devices being a common vector
for cyber-physical attacks. Their approach achieves an
average Fl-score of 0.945 without requiring physical contact
or activation to distinguish self from non-self-devices. The
results demonstrate the feasibility of the framework for
reducing the attack surface in cyber-physical environments.
This work lays the foundation for broader applications of
harmonic radar in intrusion detection and hardware
authentication [14].

T P and Kathrine (2024) a novel IDS that makes use of
GNN and RNN. The GNN-+RNN architecture has been given
this dataset after it has been created as a graph. With 99.13%
f1, 100% of PRE, 98% of REC, and 99% detection accuracy,
the suggested model has been proven to be very effective [15].

Soomro et al. (2024) Their solution was Fed Secure IDS,
a cutting-edge lightweight federated deep IDS that uses
federated learning (FL), CNN, LSTM, and MLP to tackle
these problems. When it comes to symmetric session key
exchange and mutual authentication, Fed Secure IDS provides
a simple solution that tackles two major security issues:
cavesdropping and man-in-the-middle attacks. Testing
findings show that the suggested approach achieves a 98.68%
ACC, 98.78% PRE, 98.64% REC, and 99.05% F1 by utilising
a range of edge devices. In traditional centralized IDS
architectures, the concept works in a similar way [16].

Latham and Bommi (2023) The suggested method is to
build a trustworthy model for discovering intrusions into
networks that impact Internet of Things devices. The
IDS2017 dataset is used to form a regression model with Cat
Boost in the system. The presented approach considers a
variety of factors as critical characteristics for identifying the
presence of intrusion attacks on the network. The accuracy of
the system supplied was 92.5% and it was contrasted with
other modern methods [17].

Abdullahi et al. (2022) proposed that the CPS is vulnerable
to serious cyberattacks. To deal with this, new DL approaches
that can detect, identify and respond to the change in these
attacks are required. In order to identify cybersecurity risks
for the CPS, this study suggested a DL model based on LSTM.
Furthermore, the model has been tested using real-life datasets
of gas pipeline ICSs, which include 19 attributes and 7 forms
of attacks. The results obtained from the experiment showed
that after being validated, the accuracy of the suggested model
was 98.22%. Additionally, the report makes a suggestion for
possible further research [18].

SUMMARY OF THE LITERATURE REVIEW ON INTRUSION DETECTION SYSTEMS (IDS) IN LIMITED-RESOURCE CYBER-PHYSICAL

SYSTEMS (CPS)

Author (Year) Study Focus Techmq[l;::(; Models Dataset Key Findings Remarks

Achieved  98.88% Incorporates explainable Al for
Ravi Kumar et | Feature selection and | HEGSO, EFFO, IENN, Not specified accuracy, i rl;)pve dinte Iietabilit in IDS
al. (2025) explainable IDS for CPS | XAI with LIME P outperforming morziels P Y

existing methods
Denis and Di Hard\_zvare guthentlcatpn Harmonic radar-based USB o device Achieved an average Demqnstrated feamb1ht_y for

. and intrusion detection L authentication reducing attack surfaces in CPS
Pietro (2025) . authentication framework F1-score of 0.945 .
at the physical layer dataset environments
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T. P. and
Kathrine (2024)

Graph-based IDS for
CPS

RNN + GNN

Graph-structured
network traffic
dataset

Achieved 99%
accuracy, 100%
precision, 98%

recall, and 99.13%
F1-score

Strong detection  capability
using graph-based deep learning

Soomro et al.
(2024)

Federated deep IDS for
edge and CPS
environments

FedSecureIDS combining
CNN, LSTM, and MLP
within Federated Learning
(FL)

Various edge device
datasets

Accuracy: 98.68%,
Precision:  98.78%,
Recall: 98.64%, F1-
score: 99.05%

Lightweight federated approach
ensuring privacy and high
detection accuracy

Latha and | IoT network intrusion | CatBoost regression Achieved 92.5% Effect.we detection  of IoT
. . CICIDS2017 dataset intrusions, though performance
Bommi (2023) detection model accuracy .
below deep learning models
Abdullahi et al. | Cyberattack detection in Long Short-Term | Industrial ~ Control Achicved  98.22% Demonstrated DL effectlvent?ss
emo neura stem as in real-wor securi
(2022) CPS accuracy

network

pipeline dataset

applications

III. RESEARCH METHODOLOGY

The main purpose of this project is to build a security
system that can recognize aberrant behaviours in cyber-
physical systems via the use of) CICIDS2017 dataset and DL
methods. DNN and CNN models are developed on a 70:30
split with pre-processing, SMOTE balancing, and PCA
reduction. Evaluate the models' effectiveness using measures
such as F1, loss, REC, ACC, and PRE to determine which
model performs best in recognizing the cyber threat. The
study's progression is seen in Figure 1.

CICIDS2017 dataset

{ Data Preprocessing ]
sourced from Kaggle

AVZ4

il Dataset cleaning; Data
transformation; One-hot
encoding; Outlier detection
| SMOTE | using Z-score method

_+_|_—>

Implemented Models

Feature
Selection

Principal
Component
Analysis
(PCA)

Train-Test Split=70:30

Fig. 1. Flowchart visualization for IDS in Resource-Constrained Cyber-
Physical Systems

The following section thoroughly explains the methodology.

A. Data Selection and Visualization

This research employs the CICIDS2017 dataset available
on Kaggle, a product of to evaluate Intrusion Detection
System (IDS) efficacy in cyber-physical settings, in
collaboration with the CIC. Besides normal traffic, it also
contains various types of malicious traffic, including the
following attacks: DoS, DDoS, Brute Force, Botnet,
Infiltration, and Web Attacks. There are 78 features per
network flow, and the dataset has close to 2.8 million records,
thus offering an extensive and realistic resource for the
creation and testing of IDS models. The data visualization of
the dataset is shown below:
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Fig. 2. Correlation Heatmap

The pairwise Pearson correlation coefficients of the
characteristics of the dataset are presented in the Figure 2.
Features are shown on the two axes and the color intensity
shows the strength of correlation: strong correlations
(positive) +1.0, are shown in dark red, strong correlations
(negative) -1.0, are shown in dark blue, weak or no
correlations (0), are shown in lighter colors. The dark diagonal
line is the case of a perfect correlation between the features.
This plot is useful for spotting which features are strongly
correlated or even redundant and thus assist in feature
selection and dimensionality reduction.

B. Data Pre-processing

It is important to process mistakes and string data that
cannot be processed numerically or not useful to train. The
purpose of the processing of this study was to get rid of
repetitive data, outliers, and useless data elements.

e Dataset Cleaning: The experiment cannot proceed
without first pre-processing the data set. First,
cleaned up the dataset, eliminating any unnecessary
things. Missing or infinite values were eliminated
from entries, since they represented such a tiny
fraction of the whole dataset. To expose the models
to as many different examples as possible, also
removed duplicates.

e Data Transformation: Data transformation is an
important part of getting ready for data analysis,
especially in the case of heterogeneous network
traffic data with both numerical and qualitative
information.

e One-Hot Encoding: The most popular use of the
one-hot encoding approach is to use 0 and 1 to
transform a category data vector to a numeric feature
vector.

e  Outlier Detection using the Z-score method: In
order to identify the outliers properly, took the help of
Z-score technique. This statistical analysis instrument
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that is good at identifying important deviations of the
mean, offers an objective view to the detection of
anomalies. Equation (1) gives the formula for the
method:
il
z=% M
where ¢ is the standard deviation, p is the data mean, x is
the observation value, and Z is the z-score.
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Fig. 3. Histograms of 'Bwd IAT Total' with and without the Outliers

Figure 3 shows the Effect of Outlier Removal — Figure
3(a), “Bwd IAT Total — With Outliers,” displays a distribution
that is very skewed to the right, mostly values close to zero,
and extreme outliers around 1.0 x 10 8 1.0x10 8 .. Figure 3(b),
“Bwd IAT Total — Without Outliers,” shows the same
characteristic after the high-value outliers have been removed.
The distribution is still right-skewed, but the scale is
compressed, so more detail and variation within the main
range are visible.

C. Addressing Data Balancing with the Implementation of
SMOTE

The subset's representation of attack kinds was balanced
by taking additional measures.  To rectify unequal
distributions, these measures might include either under
sampling majority groups or oversampling minority classes.
During thorough examination of the dataset, a serious class
imbalance problem was discovered in the study, with
numerous innocuous network traffic samples and a small
number of cases that are typical of specific network assaults.
To lessen this issue, employed the SMOTE. And the
SMOTE's concept is to use available minority samples to
synthesize instances for the minority class. In order to
increase the number of samples of minority classes and move
them closer to equality, SMOTE strategically creates new
attacks that closely mimic real attacks.
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Fig. 4. Imbalanced and Balanced Distribution of the Target Variable in the
Dataset

The comparison of the imbalanced and then balanced class
distributions is shown in Figure 4. Figure 4(a) shows the
original imbalance in which Class 0: Benign (1.8M) is
overwhelming Class 1: Malicious (300K) significantly. Figure
4(b) shows the balanced result of both classes (300K), which
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means the 1:1 ratio obtained by down-sampling to balance the
dataset for training the model.

D. Feature Selection by applying Principal Component
Analysis (PCA)

A crucial step in the feature selection process is PCA [19].
PCA converts the initial variables into a new set of
independent variables in order to discern and retain the most
important aspects. By reducing data dimensionality while
preserving as much variety as possible, PCA can improve
model performance and reduce computational costs. Using
PCA, can leverage the data's inherent patterns and structures
to inform subsequent analyses and models.

E. Model Development

DL models can categorize behaviors as normal or deviant
by recognizing patterns in CPS. In order to assess the efficacy
of DL methodologies, created and examined many DL
models, such as:

1) Deep Neural Network (DNN)

In order to identify infiltration in this experiment, a six-
layer DNN has been constructed and refined. A network
design with two hidden levels was the starting point.
Nevertheless, the experimental findings indicate that the
network's performance with two hidden layers is
unsatisfactory [20]. The six-layer DNN produced the best
results, so it was tested with varying numbers of hidden layers.
The feature extraction module extracts features. The dataset
contains the features, with eight features per row [21]. Before
being sent to the suggested network, these rows are transposed
using Equation (2):

Finput = [F, F;, F3, F,, Fs'Fs]T (2)

The network's output vector is determined by Equation
3):
yl — O.l(Bl + WlKl—l) (3)

where the output vector is denoted by y', the activation
function by ¢!, the bias vector by B, and the layer before the
layer [ by K1,

2) Convolutional Neural Network (CNN)

In order to perform binary and multi-class classifications,
the provided model architecture incorporates a CNN. An input
layer accepts a one-dimensional array of sequential data as its
starting point. The first CNN block consists of a convolutional
layer, max pooling, dropout, batch normalization, and ReLU
activation, which is responsible for efficient feature extraction
and regularization [22]. This is done iteratively using several
CNN blocks with varied kernel sizes, each of which detects a
unique feature or pattern in the input. In order to filter the
input data and extract features, the convolution process is
utilized by the CNN layers. To do this, the input feature map
is used as a basis for sliding the convolution kernel across it,
with each point being used to compute the dot product and
ultimately produce a feature map. An equation describing the
mathematical aspects of the convolution procedure is given by
Equation (4) below:

Zi,j = (X * K)i,j = ZmZnZi+m_j+nkm,n (4)

In this case, X is the input feature map, and Z is the output.
The input features are transformed into output features using
a convolution kernel K throughout the convolution process.
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F. Dataset Splitting

The data is divided into 70:30 training and test sets, with
70% utilized for training and 30% for testing, in order to train
and assess DL models.

IV. RESULTS AND EVALUATION METRICS

The experiments in this research were conducted using a
Core (TM) 17-1065G7 CPU operating at 1.30 GHz and 1.50
GHz. Python version 3.7.1 is also used, as it has a wide range
of classification models and libraries.

A. Evaluation Measures

Important measures for evaluating cybersecurity
effectiveness include F1, REC, PRE, and ACC. To achieve
optimal accuracy on the IDS dataset, a DL model was trained
in this investigation. The suggested DL models were
evaluated for their classification performance using the
CICIDS2017 dataset.

A general indicator of how well the model distinguishes
between malicious and benign actions, accuracy indicates the
proportion of correctly identified network activities. PRE is
the proportion of intrusions found that are actual attacks,
thereby minimizing false alarms. The ability of a model to
capture all of the real assaults of the system is measured by its
rec. A balanced measure of detection ability is the F1, the
harmonic mean of acc and rec. The set has been completed
by loss, which is the discrepancy between the model's
projected output and the actual activity labels. It demonstrates
the IDS's ability to differentiate between harmful and benign
activities with minimal processing effort. The mathematical
representations of these metrics are represented by Equations
(5)-(8):

TP+TN

Accuracy = ————— ®)
TP+TN+FP+FN
.. TP
Precision = (6)
TP+FP
TP
Recall = 7
TP+FN
2xprecisionXrecall
Fl="b———— (®)
precision+recall

TP are the times when attacks are correctly recognized as
intrusions, and TN are the normal system operations that are
correctly identified as safe. FP are normal activities that have
been wrongly flagged as intrusions, thus causing false alarms,
and FN are those real attacks that have been wrongly taken for
normal behavior, hence, they are a source of potential security
risks.

B. Result Demonstrations

The effectiveness of DNN and CNN models for the
Intrusion Detection task in resource-constrained Cyber-
Physical Systems is compared in Table II. Both models are
excellent to the point that DNN just slightly outperformed
CNN. The DNN was able to achieve 99.7% accuracy, whereas
the CNN was at 99.5% accuracy.

TABLE II. MODEL PERFORMANCE FOR IDS IN RESOURCE-CONSTRAINED
CYBER-PHYSICAL SYSTEMS

Metrics DNN CNN
Accuracy 99.7 99.5
Precision 99.0 98.0
Recall 99.0 99.0
F1-Score 99.0 99.0
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Fig. 5. Training-Validation Accuracy and Loss

Figure 5 shows the changes of the Dense Neural Network
(DNN) performance over the training epochs for Accuracy
(5(a)) and Loss (5(b)). In Figure 5(a), the accuracies on both
the training and validation sets reach 1.0 very quickly and
remain there from about 12 epochs, indicating that the model
has learned well and generalized correctly. Figure 5(b) shows
the loss gradually reducing to 0 during training; however, after
reaching a minimum around 5 epochs, it starts to increase
slightly, indicating a slight overfitting.
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Fig. 6. Training-Validation Accuracy and Loss

Figure 6 illustrates the CNN model's training performance
in terms of Accuracy (6(a)) and Loss (6(b)) over epochs. In
Figure 6(a), the accuracies of both the training and validation
sets increase rapidly from 0.96 to approximately 0.99 over 10
epochs, and they converge, indicating proper learning and
generalization. In Figure 6(b), the loss of the training is
continuously getting lower and reaches 0, whereas the loss of
validation is a little bit higher after 5 epochs, which means that
there is a small amount of overfitting, though the validation
accuracy is very high.
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Fig. 7. Confusion Matrices: (a) Deep Neural Network (DNN); (b)
Convolutional Neural Network (CNN)

Figure 7 shows the Confusion Matrices for a DNN (a) and
a CNN (b) used for an 8-class classification task. Both models
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are effective, as most of their predictions fall on the diagonal,
indicating high accuracy. The DNN has a few instances of
mixture between the classes ‘2° and ‘3’°, whereas the CNN
sometimes confuses class ‘1’ with ‘2. In general, the CNN
shows slightly better diagonal dominance, suggesting a
marginally higher accuracy.

C. Comparative Evaluation

Table III shows the performance comparison of different
intrusion detection system (IDS) models in resource-
constrained cyber-physical systems based on their accuracy.
The CNN-LSTM model achieved 95.21% accuracy, while the
MAD-GAN and GRU models achieved 96.80% and 97.81%,
respectively. The MLP model's accuracy was 94.79%. The
newly designed models were beyond the reach of the old
methods, with the newly designed DNN recording the highest
accuracy of 99.7%, and the newly designed CNN being the
second closest with 99.5% accuracy.

TABLE III. PERFORMANCE COMPARISON OF IDS IN RESOURCE-
CONSTRAINED CYBER-PHYSICAL SYSTEMS

Ref. Model Acc. Pre. Rec. F1-Sc.
[23] CNN-LSTM 95.21 88.76 | 82.59 84.14
[24] MAD-GAN 96.80 | 96.98 | 98.11 96.25
[25] GRU 97.81 98.36 | 98.07 98.03
[26] MLP 94.79 | 94.79 | 94.79 94.78
Prop. DNN 99.7 99.0 99.0 99.0
Prop. CNN 99.5 98.0 99.0 99.0

Table IV provides a comparison of different intrusion
detection system (IDS) models that have been used on various
datasets in cyber-physical systems with limited resources. The
ML-CPSS model achieved 97.8% acc on the TON IoT
dataset. In contrast, the Random Forest (RF) model achieved
87.75% on the STIN dataset. The DCNN-HMACO model
achieved 92.14% acc on the UNSW-NBI15 and TON IoT
datasets. Also, the Decision Tree (DT) model achieved
97.85% on the HAI dataset. The proposed models have shown
better results: the proposed DNN achieved 99.5% on the CIC-
IDS2017 dataset, and the suggested CNN came in fairly close
at 99.5%, whereas the highest accuracy was 99.7%.

TABLE IV. PERFORMANCE COMPARISON OF IDS IN RESOURCE-
CONSTRAINED CYBER-PHYSICAL SYSTEMS ACROSS MULTIPLE DATASETS

Ref. Model Dataset Acc. Pre. Rec. F1-Sc.
[27] ML- ToNIoT 97.8 97.7 97.8 97.7
CPSS
[28] RF STIN 87.75 | 89.98 | 91.02 90.50
[29] DCNN- UNSW- 92.14 - 94.0 87.0
HMACO | NBI15 and %
TON IoT
[30] DT HAI 97.85 - - 99.70
Prop. DNN CIC- 99.7 99.0 99.0 99.0
1DS2017
Prop. CNN CIC- 99.5 98.0 99.0 99.0
1DS2017

D. Discussion

According to the study, DNN and CNN models have been
very effective in detecting network intrusions in cyber-
physical systems under limited resources. In essence, both
models have shown fast learning, generalized well, and
performed strongly in multi-class classification with very few
errors. Compared with current IDS methods, the proposed
models are more flexible and reliable; thus, DL architectures
pave the path to increased detection efficiency and accuracy
in these environments.
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V. CONCLUSION AND FUTURE SCOPE

The rapid integration of CPS into key industries highlights
the critical need for efficient intrusion detection. The study
results show that DL-based ID may improve security in
resource-restricted CPS to a greater extent by comparing
several online and offline ML techniques for intrusion
detection in the CPS region. It was discovered that the models
tested performed very well, with the Deep Neural Network
(DNN) achieving 99.7% accuracy and the Convolutional
Neural Network (CNN) achieving 99.5% accuracy. Such
results indicate that DL techniques are reliable, effective and
adaptable in detecting and classifying network attacks, leading
to the fact that the techniques are highly viable in practice in
cyber-physical environments.

Future work can examine how the proposed models may
be streamlined to enable real-time intrusion detection using
lightweight architectures applicable to edge and IoT devices.
In fact, the application of hybrid DL models, complex feature
selection schemes, and continuous learning strategies can
further improve the systems' ability to adapt, detection
accuracy, and resistance to cyber threats in a constantly
changing cyber-physical environment.
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