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Abstract—Important infrastructures like water treatment and smart grids rely heavily on cyber-physical systems (CPS), which are 

increasingly vulnerable to new and developing threats.  The advent of Intrusion Detection Systems (IDS) tailored to CPS design has 

become one of the essential tactics for safeguarding them, despite the fact that traditional security measures like firewalls and 

encryption do not function well enough with CPS architecture. The study article presents a deep learning (DL) approach to an IDS 

to identify security attacks in a network of resource-constrained CPS using the CICIDS2017 database. Some preprocessing 

operations, such as cleaning, transformation, one-hot encoding, outliers removal using the Z-score method, and class balancing using 

SMOTE, were performed on the dataset. The tasks of dimensionality reduction and feature selection were performed with the help 

of Principal Component Analysis (PCA). The binary and multi-class intrusion detection was done with a built and tested six-layer 

Deep Neural Network (DNN) and a Convolutional Neural Network (CNN). The DNN could obtain 99.7% and the CNN 99.5%. The 

two models were good generalizers, with low overfitting, and high precision (PRE), recall (REC), and F1-Score (F1). Comparative 

performance analysis of the existing methods and the suggested models proved that the suggested models possess a higher detection 

accuracy and can be utilized much faster, hence, they may be an appropriate option when it comes to the deployment of a strong and 

scalable IDS in a cyber-physical environment. 

Keywords—Cyber Physical Systems (CPSs), Deep Learning, Intrusion Detection System (IDS), Anomaly Detection, Water Treatment 

Systems. 

I. INTRODUCTION 

To identify and detect intrusion attacks, cybersecurity [1] 
systems use the Intrusion Detection System (IDS), a potent 
tool.  There is a greater chance of intrusion attempts in 
different forms as data generation increases [2]. One of the 
biggest issues nowadays is the necessity of maintaining strong 
cybersecurity, since the variety of networking technologies is 
increasing quickly, and cyber-attacks are becoming more 
common [3].  In cybersecurity, one of the most crucial aspects 
is identifying and stopping malicious behavior and gaining 
access to computer networks [4]. Monitoring network activity 
and spotting any security breaches requires an intrusion 
detection system, or IDS. Traditional IDS systems primarily 
rely on signature-based methods, making it difficult to detect 
new and complex threats. 

The link of a physical and cyber system where data and 
information are exchanged in real-time is known as a cyber-
physical system (CPS) [5][6]. CPS has a lot of economic 
potential and is crucial in the IoT-based sector. With its 
foundation in the IoT, CPS takes into account how physical, 
network, and computer systems interact [7]. It has evolved 
into the Internet of Cyber-Physical Things, which offers a 
variety of services, including smart homes, smart cities, e-
commerce, and e-health.  

The resource-constrained environment in Internet of 
Things (IoT) security poses significant challenges, including 
but not limited to data encryption, privacy preservation, 
vulnerabilities, threats, attacks, and limits, despite the 

existence of several Internet security solutions. For these 
privacy and security concerns related to the IoT to be resolved, 
it is essential to develop appropriate technologies for 
environments with limited resources. 

The AI algorithms may have their own set of vulnerabilities 

[8]They may also be the answer to this problem by keeping 

an eye on network traffic in an industrial environment. 

Regular updates are necessary for these systems, especially 

those that are connected to an IIoT infrastructure, because 

unknown attack signatures can greatly impact an IDS. This is 

how an AI-based IDS differs from a traditional IDS system 

[9]. It is impossible for traditional intrusion detection 

methods, including signature-based detection systems, to 

detect newly launched attacks (zero-day attacks) or to adjust 

to changing attack tactics. Therefore, ML and DL have 

become important topics in intrusion detection system 

network security research [10][11]. The computing power 

required for DL models is often considerable [12], especially 

when it comes to graphics processing units (GPUs) or 

transpose units (TPUs), which have a number of downsides, 

such as expensive training, subpar performance in real-time, 

and a heavy communication burden associated with 

centralized models. Such issues can jeopardize the disclosure 

of private data and are particularly troublesome in edge 

computing. 

A. Motivation 

The complexity of CPS and IoT networks has exposed 
them to increasingly advanced cyber threats. Conventional 
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signature-based IDS techniques are incapable of identifying 
new attack types or adapting to the evolving threat landscape. 
The research presented here aims to create smart, energy-
efficient DL-driven IDS models using DNN and CNN to 
achieve results very close to the truth, rapid detection, and the 
ability to be extended to environments with limited resources 
in CPS.  The following are the primary findings of the 
research: 

• Designing a DL–driven IDS that uses the 
CICIDS2017 dataset for security in cyber-physical 
systems. 

• Performing thorough data pre-treatment procedures, 
including data transformation, encoding, cleaning, 
and Z-score outlier detection.  

• Using SMOTE, can improve the model training 
process and address the issue of class imbalance. 

• Data dimensionality reduction and effective feature 
selection are accomplished by using PCA. 

• Convolutional and deep neural networks (CNNs and 
DNNs, respectively) were used to develop IDS 
models. 

• Model performance evaluation using REC, ACC, 
PRE, F1, and loss metrics to choose the best network 
model for intrusion detection. 

B. Organization of the Research 

This research is organized in the following way: Section II 
covers literature related to IDS in resource-constrained CPS, 
Section III explains the methodology, i.e., dataset, pre-
processing, and model implementation, Section IV shows the 
comparative analysis and experimental results, and Section V 
conclusion the study and suggests avenues for more 
investigation. 

II. RELATED WORK 

This study's main aim is to analyze panel study data about 
IDS in CPS with limited resources. The research domain and 
the methodological framework of this study were influenced 
by the findings of this analysis. A summary of the examined 
research is represented by Table I, which includes the aspects 
of the review, focus of the study, models and techniques 
applied, datasets, main findings, and comments. 

Ravi Kumar et al. (2025) suggested a HEGSO algorithm 
is used to choose which features to use in the XAIID-SCPS 
method. The usage of an Improved Elman Neural Network 
(IENN) architecture for parameter standardization and the 
Enhanced Fruitfly Optimization (EFFO) approach for 
intrusion detection. To make the black-box technique simpler 
to comprehend and explain, the XAIID-SCPS method 
additionally integrates the XAI methodology with Local 
Interpretable Model-Agnostic explanation (LIME). This 
makes it possible to accurately define attacks. There is a 

98.88% chance that the XAIID-SCPS technique work better 
than other methods, as shown by the higher simulation 
numbers [13]. 

Denis and Di Pietro (2025) they evaluated their framework 
with a use case focusing on authentication at the physical layer 
of USB devices—these latter devices being a common vector 
for cyber-physical attacks. Their approach achieves an 
average F1-score of 0.945 without requiring physical contact 
or activation to distinguish self from non-self-devices. The 
results demonstrate the feasibility of the framework for 
reducing the attack surface in cyber-physical environments. 
This work lays the foundation for broader applications of 
harmonic radar in intrusion detection and hardware 
authentication [14]. 

T P and Kathrine (2024) a novel  IDS that makes use of 
GNN and RNN.  The GNN+RNN architecture has been given 
this dataset after it has been created as a graph.  With 99.13% 
f1, 100% of PRE, 98% of REC, and 99% detection accuracy, 
the suggested model has been proven to be very effective [15]. 

Soomro et al. (2024) Their solution was Fed Secure IDS, 
a cutting-edge lightweight federated deep IDS that uses 
federated learning (FL), CNN, LSTM, and MLP to tackle 
these problems.  When it comes to symmetric session key 
exchange and mutual authentication, Fed Secure IDS provides 
a simple solution that tackles two major security issues: 
eavesdropping and man-in-the-middle attacks. Testing 
findings show that the suggested approach achieves a 98.68% 
ACC, 98.78% PRE, 98.64% REC, and 99.05% F1 by utilising 
a range of edge devices.  In traditional centralized IDS 
architectures, the concept works in a similar way [16].  

Latham and Bommi (2023) The suggested method is to 
build a trustworthy model for discovering intrusions into 
networks that impact Internet of Things devices.  The 
IDS2017 dataset is used to form a regression model with Cat 
Boost in the system.  The presented approach considers a 
variety of factors as critical characteristics for identifying the 
presence of intrusion attacks on the network. The accuracy of 
the system supplied was 92.5% and it was contrasted with 
other modern methods [17]. 

Abdullahi et al. (2022) proposed that the CPS is vulnerable 
to serious cyberattacks.  To deal with this, new DL approaches 
that can detect, identify and respond to the change in these 
attacks are required.  In order to identify cybersecurity risks 
for the CPS, this study suggested a DL model based on LSTM.   
Furthermore, the model has been tested using real-life datasets 
of gas pipeline ICSs, which include 19 attributes and 7 forms 
of attacks.  The results obtained from the experiment showed 
that after being validated, the accuracy of the suggested model 
was 98.22%.  Additionally, the report makes a suggestion for 
possible further research [18].  

TABLE I.  SUMMARY OF THE LITERATURE REVIEW ON INTRUSION DETECTION SYSTEMS (IDS) IN LIMITED-RESOURCE CYBER-PHYSICAL 

SYSTEMS (CPS) 

Author (Year) Study Focus 
Techniques / Models 

Used 
Dataset Key Findings Remarks 

Ravi Kumar et 

al. (2025) 

Feature selection and 

explainable IDS for CPS 

HEGSO, EFFO, IENN, 

XAI with LIME 
Not specified 

Achieved 98.88% 

accuracy, 

outperforming 
existing methods 

Incorporates explainable AI for 
improved interpretability in IDS 

models 

Denis and Di 
Pietro (2025) 

Hardware authentication 

and intrusion detection 

at the physical layer 

Harmonic radar-based 
authentication framework 

USB device 

authentication 

dataset 

Achieved an average 
F1-score of 0.945 

Demonstrated feasibility for 

reducing attack surfaces in CPS 

environments 



Dr. P. S. Rathore, Journal of Global Research in Multidisciplinary Studies (JGRMS, 2 (1), January 2026, 1-7) 

© JGRMS 2026, All Rights Reserved   3 

T. P. and 

Kathrine (2024) 

Graph-based IDS for 

CPS 
RNN + GNN 

Graph-structured 

network traffic 

dataset 

Achieved 99% 
accuracy, 100% 

precision, 98% 

recall, and 99.13% 
F1-score 

Strong detection capability 

using graph-based deep learning 

Soomro et al. 

(2024) 

Federated deep IDS for 
edge and CPS 

environments 

FedSecureIDS combining 

CNN, LSTM, and MLP 

within Federated Learning 
(FL) 

Various edge device 

datasets 

Accuracy: 98.68%, 

Precision: 98.78%, 

Recall: 98.64%, F1-
score: 99.05% 

Lightweight federated approach 
ensuring privacy and high 

detection accuracy 

Latha and 

Bommi (2023) 

IoT network intrusion 

detection 

CatBoost regression 

model 
CICIDS2017 dataset 

Achieved 92.5% 

accuracy 

Effective detection of IoT 

intrusions, though performance 
below deep learning models 

Abdullahi et al. 
(2022) 

Cyberattack detection in 
CPS 

Long Short-Term 

Memory (LSTM) neural 

network 

Industrial Control 

System (ICS) gas 

pipeline dataset 

Achieved 98.22% 
accuracy 

Demonstrated DL effectiveness 

in real-world CPS security 

applications 

III. RESEARCH METHODOLOGY  

The main purpose of this project is to build a security 
system that can recognize aberrant behaviours in cyber-
physical systems via the use of) CICIDS2017 dataset and DL 
methods. DNN and CNN models are developed on a 70:30 
split with pre-processing, SMOTE balancing, and PCA 
reduction. Evaluate the models' effectiveness using measures 
such as F1, loss, REC, ACC, and PRE to determine which 
model performs best in recognizing the cyber threat.  The 
study's progression is seen in Figure 1.  

 

Fig. 1. Flowchart visualization for IDS in Resource-Constrained Cyber-

Physical Systems 

The following section thoroughly explains the methodology. 

A. Data Selection and Visualization 

This research employs the CICIDS2017 dataset available 
on Kaggle, a product of to evaluate Intrusion Detection 
System (IDS) efficacy in cyber-physical settings, in 
collaboration with the CIC. Besides normal traffic, it also 
contains various types of malicious traffic, including the 
following attacks: DoS, DDoS, Brute Force, Botnet, 
Infiltration, and Web Attacks. There are 78 features per 
network flow, and the dataset has close to 2.8 million records, 
thus offering an extensive and realistic resource for the 
creation and testing of IDS models. The data visualization of 
the dataset is shown below: 

 

Fig. 2. Correlation Heatmap  

The pairwise Pearson correlation coefficients of the 
characteristics of the dataset are presented in the Figure 2. 
Features are shown on the two axes and the color intensity 
shows the strength of correlation: strong correlations 
(positive) +1.0, are shown in dark red, strong correlations 
(negative) -1.0, are shown in dark blue, weak or no 
correlations (0), are shown in lighter colors. The dark diagonal 
line is the case of a perfect correlation between the features. 
This plot is useful for spotting which features are strongly 
correlated or even redundant and thus assist in feature 
selection and dimensionality reduction. 

B. Data Pre-processing  

It is important to process mistakes and string data that 
cannot be processed numerically or not useful to train.  The 
purpose of the processing of this study was to get rid of 
repetitive data, outliers, and useless data elements.  

• Dataset Cleaning: The experiment cannot proceed 
without first pre-processing the data set.  First, 
cleaned up the dataset, eliminating any unnecessary 
things.  Missing or infinite values were eliminated 
from entries, since they represented such a tiny 
fraction of the whole dataset.  To expose the models 
to as many different examples as possible, also 
removed duplicates. 

• Data Transformation: Data transformation is an 
important part of getting ready for data analysis, 
especially in the case of heterogeneous network 
traffic data with both numerical and qualitative 
information. 

• One-Hot Encoding: The most popular use of the 
one-hot encoding approach is to use 0 and 1 to 
transform a category data vector to a numeric feature 
vector. 

• Outlier Detection using the Z-score method: In 
order to identify the outliers properly, took the help of 
Z-score technique. This statistical analysis instrument 

CICIDS2017 dataset 

sourced from Kaggle 
 Data Preprocessing 

Dataset cleaning; Data 

transformation; One-hot 

encoding; Outlier detection 

using Z-score method 

Class balancing 

with  

SMOTE 

Feature 

Selection 

 
 Principal 

Component 
Analysis 
(PCA) 

Implemented Models 

DNN CNN 

Performance Measurement 

with accuracy, precision, 
recall, f1-score and loss 

Train-Test Split= 70:30 

RESULTS 
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that is good at identifying important deviations of the 
mean, offers an objective view to the detection of 
anomalies. Equation (1) gives the formula for the 
method:  

 𝑍 =
𝑥−μ

𝜎
   () 

where 𝜎 is the standard deviation, μ  is the data mean, 𝑥 is 
the observation value, and 𝑍 is the z-score. 

 

Fig. 3. Histograms of 'Bwd IAT Total' with and without the Outliers 

Figure 3 shows the Effect of Outlier Removal — Figure 
3(a), “Bwd IAT Total – With Outliers,” displays a distribution 
that is very skewed to the right, mostly values close to zero, 
and extreme outliers around 1.0 × 10 8 1.0×10 8 .. Figure 3(b), 
“Bwd IAT Total – Without Outliers,” shows the same 
characteristic after the high-value outliers have been removed. 
The distribution is still right-skewed, but the scale is 
compressed, so more detail and variation within the main 
range are visible. 

C. Addressing Data Balancing with the Implementation of 

SMOTE 

The subset's representation of attack kinds was balanced 
by taking additional measures.  To rectify unequal 
distributions, these measures might include either under 
sampling majority groups or oversampling minority classes. 
During thorough examination of the dataset, a serious class 
imbalance problem was discovered in the study, with 
numerous innocuous network traffic samples and a small 
number of cases that are typical of specific network assaults.  
To lessen this issue, employed the SMOTE. And the 
SMOTE's concept is to use available minority samples to 
synthesize instances for the minority class.  In order to 
increase the number of samples of minority classes and move 
them closer to equality, SMOTE strategically creates new 
attacks that closely mimic real attacks. 

 

Fig. 4. Imbalanced and Balanced Distribution of the Target Variable in the 

Dataset 

The comparison of the imbalanced and then balanced class 
distributions is shown in Figure 4. Figure 4(a) shows the 
original imbalance in which Class 0: Benign (1.8M) is 
overwhelming Class 1: Malicious (300K) significantly. Figure 
4(b) shows the balanced result of both classes (300K), which 

means the 1:1 ratio obtained by down-sampling to balance the 
dataset for training the model. 

D. Feature Selection by applying Principal Component 

Analysis (PCA) 

A crucial step in the feature selection process is PCA [19]. 
PCA converts the initial variables into a new set of 
independent variables in order to discern and retain the most 
important aspects.  By reducing data dimensionality while 
preserving as much variety as possible, PCA can improve 
model performance and reduce computational costs.  Using 
PCA, can leverage the data's inherent patterns and structures 
to inform subsequent analyses and models. 

E. Model Development 

DL models can categorize behaviors as normal or deviant 
by recognizing patterns in CPS.  In order to assess the efficacy 
of DL methodologies, created and examined many DL 
models, such as: 

1) Deep Neural Network (DNN) 
In order to identify infiltration in this experiment, a six-

layer DNN has been constructed and refined.  A network 
design with two hidden levels was the starting point.  
Nevertheless, the experimental findings indicate that the 
network's performance with two hidden layers is 
unsatisfactory [20]. The six-layer DNN produced the best 
results, so it was tested with varying numbers of hidden layers. 
The feature extraction module extracts features. The dataset 
contains the features, with eight features per row [21]. Before 
being sent to the suggested network, these rows are transposed 
using Equation (2): 

 𝐹𝑖𝑛𝑝𝑢𝑡 = [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6]𝑇 () 

The network's output vector is determined by Equation 
(3): 

 𝑦𝑙 = 𝜎𝑙(𝐵𝑙 + 𝑊𝑙𝐾𝑙−1) () 

where the output vector is denoted by 𝑦𝑙 , the activation 

function by 𝜎𝑙, the bias vector by 𝐵𝑙 , and the layer before the 

layer 𝑙 by 𝐾𝑙−1. 

2) Convolutional Neural Network (CNN) 
In order to perform binary and multi-class classifications, 

the provided model architecture incorporates a CNN. An input 
layer accepts a one-dimensional array of sequential data as its 
starting point. The first CNN block consists of a convolutional 
layer, max pooling, dropout, batch normalization, and ReLU 
activation, which is responsible for efficient feature extraction 
and regularization [22]. This is done iteratively using several 
CNN blocks with varied kernel sizes, each of which detects a 
unique feature or pattern in the input.  In order to filter the 
input data and extract features, the convolution process is 
utilized by the CNN layers. To do this, the input feature map 
is used as a basis for sliding the convolution kernel across it, 
with each point being used to compute the dot product and 
ultimately produce a feature map.  An equation describing the 
mathematical aspects of the convolution procedure is given by 
Equation (4) below: 

 𝑍𝑖,𝑗 = (𝑋 ∗ 𝐾)𝑖,𝑗 = ∑ ∑ 𝑍𝑖+𝑚,𝑗+𝑛𝑘𝑚,𝑛𝑛𝑚  () 

In this case, X is the input feature map, and Z is the output.  
The input features are transformed into output features using 
a convolution kernel K throughout the convolution process. 

3(a) 3(b) 

4(a) 4(b) 



Dr. P. S. Rathore, Journal of Global Research in Multidisciplinary Studies (JGRMS, 2 (1), January 2026, 1-7) 

© JGRMS 2026, All Rights Reserved   5 

F. Dataset Splitting 

The data is divided into 70:30 training and test sets, with 
70% utilized for training and 30% for testing, in order to train 
and assess DL models.   

IV. RESULTS AND EVALUATION METRICS 

The experiments in this research were conducted using a 
Core (TM) i7-1065G7 CPU operating at 1.30 GHz and 1.50 
GHz. Python version 3.7.1 is also used, as it has a wide range 
of classification models and libraries. 

A. Evaluation Measures 

Important measures for evaluating cybersecurity 
effectiveness include F1, REC, PRE, and ACC. To achieve 
optimal accuracy on the IDS dataset, a DL model was trained 
in this investigation. The suggested DL models were 
evaluated for their classification performance using the 
CICIDS2017 dataset.  

A general indicator of how well the model distinguishes 
between malicious and benign actions, accuracy indicates the 
proportion of correctly identified network activities. PRE is 
the proportion of intrusions found that are actual attacks, 
thereby minimizing false alarms. The ability of a model to 
capture all of the real assaults of the system is measured by its 
rec.  A balanced measure of detection ability is the F1, the 
harmonic mean of acc and rec.  The set has been completed 
by loss, which is the discrepancy between the model's 
projected output and the actual activity labels. It demonstrates 
the IDS's ability to differentiate between harmful and benign 
activities with minimal processing effort. The mathematical 
representations of these metrics are represented by Equations 
(5)-(8):  

 Accuracy =
TP+TN

TP+TN+FP+FN
  () 

 Precision =
TP

TP+FP
   () 

 Recall =
TP

TP+FN
  () 

 𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
   () 

TP are the times when attacks are correctly recognized as 
intrusions, and TN are the normal system operations that are 
correctly identified as safe. FP are normal activities that have 
been wrongly flagged as intrusions, thus causing false alarms, 
and FN are those real attacks that have been wrongly taken for 
normal behavior, hence, they are a source of potential security 
risks.  

B. Result Demonstrations 

The effectiveness of DNN and CNN models for the 
Intrusion Detection task in resource-constrained Cyber-
Physical Systems is compared in Table II. Both models are 
excellent to the point that DNN just slightly outperformed 
CNN. The DNN was able to achieve 99.7% accuracy, whereas 
the CNN was at 99.5% accuracy. 

TABLE II.  MODEL PERFORMANCE FOR IDS IN RESOURCE-CONSTRAINED 

CYBER-PHYSICAL SYSTEMS 

Metrics DNN CNN 

Accuracy 99.7 99.5 

Precision 99.0 98.0 

Recall 99.0 99.0 

F1-Score 99.0 99.0 

 

Fig. 5. Training-Validation Accuracy and Loss 

Figure 5 shows the changes of the Dense Neural Network 
(DNN) performance over the training epochs for Accuracy 
(5(a)) and Loss (5(b)). In Figure 5(a), the accuracies on both 
the training and validation sets reach 1.0 very quickly and 
remain there from about 12 epochs, indicating that the model 
has learned well and generalized correctly. Figure 5(b) shows 
the loss gradually reducing to 0 during training; however, after 
reaching a minimum around 5 epochs, it starts to increase 
slightly, indicating a slight overfitting. 

 

Fig. 6. Training-Validation Accuracy and Loss 

Figure 6 illustrates the CNN model's training performance 
in terms of Accuracy (6(a)) and Loss (6(b)) over epochs. In 
Figure 6(a), the accuracies of both the training and validation 
sets increase rapidly from 0.96 to approximately 0.99 over 10 
epochs, and they converge, indicating proper learning and 
generalization. In Figure 6(b), the loss of the training is 
continuously getting lower and reaches 0, whereas the loss of 
validation is a little bit higher after 5 epochs, which means that 
there is a small amount of overfitting, though the validation 
accuracy is very high. 

 

Fig. 7. Confusion Matrices: (a) Deep Neural Network (DNN); (b) 

Convolutional Neural Network (CNN) 

Figure 7 shows the Confusion Matrices for a DNN (a) and 
a CNN (b) used for an 8-class classification task. Both models 

5(a) Accuracy 5(b) Loss 

6(a) Accuracy 6(b) Loss 

(a) (b) 
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are effective, as most of their predictions fall on the diagonal, 
indicating high accuracy. The DNN has a few instances of 
mixture between the classes ‘2’ and ‘3’, whereas the CNN 
sometimes confuses class ‘1’ with ‘2’. In general, the CNN 
shows slightly better diagonal dominance, suggesting a 
marginally higher accuracy. 

C. Comparative Evaluation 

Table III shows the performance comparison of different 
intrusion detection system (IDS) models in resource-
constrained cyber-physical systems based on their accuracy. 
The CNN-LSTM model achieved 95.21% accuracy, while the 
MAD-GAN and GRU models achieved 96.80% and 97.81%, 
respectively.  The MLP model's accuracy was 94.79%. The 
newly designed models were beyond the reach of the old 
methods, with the newly designed DNN recording the highest 
accuracy of 99.7%, and the newly designed CNN being the 
second closest with 99.5% accuracy. 

TABLE III.  PERFORMANCE COMPARISON OF IDS IN RESOURCE-
CONSTRAINED CYBER-PHYSICAL SYSTEMS 

Ref. Model Acc. Pre. Rec. F1-Sc. 

[23] CNN-LSTM 95.21 88.76 82.59 84.14 

[24] MAD-GAN 96.80 96.98 98.11 96.25 

[25] GRU 97.81 98.36 98.07 98.03 

[26] MLP 94.79 94.79 94.79 94.78 

Prop. DNN 99.7 99.0 99.0 99.0 

Prop. CNN 99.5 98.0 99.0 99.0 

Table IV provides a comparison of different intrusion 
detection system (IDS) models that have been used on various 
datasets in cyber-physical systems with limited resources. The 
ML-CPSS model achieved 97.8% acc on the TON_IoT 
dataset. In contrast, the Random Forest (RF) model achieved 
87.75% on the STIN dataset. The DCNN-HMACO model 
achieved 92.14% acc on the UNSW-NB15 and TON_IoT 
datasets. Also, the Decision Tree (DT) model achieved 
97.85% on the HAI dataset. The proposed models have shown 
better results: the proposed DNN achieved 99.5% on the CIC-
IDS2017 dataset, and the suggested CNN came in fairly close 
at 99.5%, whereas the highest accuracy was 99.7%. 

TABLE IV.  PERFORMANCE COMPARISON OF IDS IN RESOURCE-
CONSTRAINED CYBER-PHYSICAL SYSTEMS ACROSS MULTIPLE DATASETS 

Ref. Model Dataset Acc. Pre. Rec. F1-Sc. 

[27] ML-

CPSS 

ToNIoT 97.8 97.7 97.8 97.7 

[28] RF STIN 87.75 89.98 91.02 90.50 

[29] DCNN-
HMACO 

UNSW-
NB15 and 

TON_IoT 

92.14 
% 

- 94.0 87.0 

[30] DT HAI 97.85 - - 99.70 

Prop. DNN CIC-
IDS2017 

99.7 99.0 99.0 99.0 

Prop. CNN CIC-

IDS2017 

99.5 98.0 99.0 99.0 

D. Discussion 

According to the study, DNN and CNN models have been 
very effective in detecting network intrusions in cyber-
physical systems under limited resources. In essence, both 
models have shown fast learning, generalized well, and 
performed strongly in multi-class classification with very few 
errors. Compared with current IDS methods, the proposed 
models are more flexible and reliable; thus, DL architectures 
pave the path to increased detection efficiency and accuracy 
in these environments. 

V. CONCLUSION AND FUTURE SCOPE 

The rapid integration of CPS into key industries highlights 
the critical need for efficient intrusion detection.  The study 
results show that DL-based ID may improve security in 
resource-restricted CPS to a greater extent by comparing 
several online and offline ML techniques for intrusion 
detection in the CPS region. It was discovered that the models 
tested performed very well, with the Deep Neural Network 
(DNN) achieving 99.7% accuracy and the Convolutional 
Neural Network (CNN) achieving 99.5% accuracy. Such 
results indicate that DL techniques are reliable, effective and 
adaptable in detecting and classifying network attacks, leading 
to the fact that the techniques are highly viable in practice in 
cyber-physical environments. 

Future work can examine how the proposed models may 
be streamlined to enable real-time intrusion detection using 
lightweight architectures applicable to edge and IoT devices. 
In fact, the application of hybrid DL models, complex feature 
selection schemes, and continuous learning strategies can 
further improve the systems' ability to adapt, detection 
accuracy, and resistance to cyber threats in a constantly 
changing cyber-physical environment. 
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