The Transformative Applications and Ethical Challenges of Artificial Intelligence in Healthcare

Main Article Content

Preetishree Patnaik
Dr. Anoop Sharma

Abstract

Artificial Intelligence (AI) has become a transformative force in healthcare, revolutionizing diagnostics, treatment planning, and patient care through advanced technologies like machine learning, natural language processing, and predictive analytics. AI-powered tools have enabled early detection of critical diseases such as cancer and cardiovascular conditions, streamlined medical imaging analysis, and enhanced precision in minimally invasive surgeries. Additionally, AI bridges healthcare accessibility gaps by facilitating telehealth solutions and remote patient monitoring in underserved areas. However, alongside these advancements, significant challenges persist, particularly regarding data privacy, algorithmic bias, and ethical considerations. By balancing technological innovation with robust ethical frameworks and stakeholder collaboration, AI has the potential to reshape the healthcare ecosystem, providing more efficient, equitable, and patient-centered solutions that improve outcomes while reducing costs.

Downloads

Download data is not yet available.

Article Details

Section

Review Article

How to Cite

The Transformative Applications and Ethical Challenges of Artificial Intelligence in Healthcare. (2025). Journal of Global Research in Multidisciplinary Studies(JGRMS), 1(1), 37-49. https://doi.org/10.5281/zenodo.14741402

References

1. Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. Q. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. In Database. https://doi.org/10.1093/database/baaa010

2. Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., & Al-Muhanna, F. A. (2023). A Review of the Role of Artificial Intelligence in Healthcare. In Journal of Personalized Medicine. https://doi.org/10.3390/jpm13060951

3. Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., Al Yami, M. S., Al Harbi, S., & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. In BMC Medical Education. https://doi.org/10.1186/s12909-023-04698-z

4. Araújo, F. H. D., Santana, A. M., & de A. Santos Neto, P. (2016). Using machine learning to support healthcare professionals in making preauthorisation decisions. International Journal of Medical Informatics. https://doi.org/10.1016/j.ijmedinf.2016.06.007

5. Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare Journal. https://doi.org/10.7861/fhj.2021-0095

6. Bassett, C. (2019). The computational therapeutic: exploring Weizenbaum’s ELIZA as a history of the present. AI and Society. https://doi.org/10.1007/s00146-018-0825-9

7. Blackwell, S. E., & Heidenreich, T. (2021). Cognitive Behavior Therapy at the Crossroads. In International Journal of Cognitive Therapy. https://doi.org/10.1007/s41811-021-00104-y

8. Choudhury, A., & Asan, O. (2020). Role of artificial intelligence in patient safety outcomes: Systematic literature review. In JMIR Medical Informatics. https://doi.org/10.2196/18599

9. D’Alfonso, S. (2020). AI in mental health. Current Opinion in Psychology, 36, 112–117. https://doi.org/10.1016/j.copsyc.2020.04.005

10. Dave, D. (2024). Healthcare Industry. https://radixweb.com/blog/how-ai-is-transforming-healthcare

11. Emanet, N., Öz, H. R., Bayram, N., & Delen, D. (2014). A comparative analysis of machine learning methods for classification type decision problems in healthcare. Decision Analytics. https://doi.org/10.1186/2193-8636-1-6

12. Feldman, A. M. Y., & Staff, F. (2024). How Viz.ai Uses Artificial Intelligence To Treat Stroke Patients Faster.

13. Finocchiaro, G. (2024). The regulation of artificial intelligence. AI and Society. https://doi.org/10.1007/s00146-023-01650-z

14. Fionda, B., Boldrini, L., D’Aviero, A., Lancellotta, V., Gambacorta, M. A., Kovács, G., Patarnello, S., Valentini, V., & Tagliaferri, L. (2020). Artificial intelligence (AI) and interventional radiotherapy (brachytherapy): State of art and future perspectives. In Journal of Contemporary Brachytherapy. https://doi.org/10.5114/jcb.2020.100384

15. Gartner, D., & Padman, R. (2020). Machine learning for healthcare behavioural OR: Addressing waiting time perceptions in emergency care. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2019.1571005

16. GOLDSTEIN, I., & PAPERT, S. (1977). Artificial intelligence, language, and the study of knowledge. Cognitive Science, 1(1), 84–123. https://doi.org/10.1016/S0364-0213(77)80006-2

17. Guan, J. (2019). Artificial Intelligence in Healthcare and Medicine: Promises, Ethical Challenges and Governance. Chinese Medical Sciences Journal. https://doi.org/10.24920/003611

18. Hanna, M. G., Pantanowitz, L., Dash, R., Harrison, J. H., Deebajah, M., Pantanowitz, J., & Rashidi, H. H. (2025). Future of Artificial Intelligence (AI) - Machine Learning (ML) Trends in Pathology and Medicine. Modern Pathology, 100705. https://doi.org/10.1016/j.modpat.2025.100705

19. Healy, M., & Walsh, P. (2017). Detecting demeanor for healthcare with machine learning. Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017. https://doi.org/10.1109/BIBM.2017.8217970

20. Johnson, K. B., Wei, W. Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., Zhao, J., & Snowdon, J. L. (2021). Precision Medicine, AI, and the Future of Personalized Health Care. In Clinical and Translational Science. https://doi.org/10.1111/cts.12884

21. Li, J. P., Haq, A. U., Din, S. U., Khan, J., Khan, A., & Saboor, A. (2020). Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3001149

22. Luxton, D. D. (2014). Artificial intelligence in psychological practice: Current and future applications and implications. Professional Psychology: Research and Practice. https://doi.org/10.1037/a0034559

23. Maity, N. G., & Das, S. (2017). Machine learning for improved diagnosis and prognosis in healthcare. IEEE Aerospace Conference Proceedings. https://doi.org/10.1109/AERO.2017.7943950

24. Minerva, F., & Giubilini, A. (2023). Is AI the Future of Mental Healthcare? Topoi. https://doi.org/10.1007/s11245-023-09932-3

25. Moor, J. (2006). The Dartmouth College Artificial Intelligence Conference: The next fifty years. AI Magazine.

26. Olawade, D. B., Wada, O. Z., Odetayo, A., David-Olawade, A. C., Asaolu, F., & Eberhardt, J. (2024). Enhancing mental health with Artificial Intelligence: Current trends and future prospects. Journal of Medicine, Surgery, and Public Health, 3, 100099. https://doi.org/10.1016/j.glmedi.2024.100099

27. Pal, D., Ghosh, A., Majumdar, S., Pan, A., & Ghosh, D. (2023). Machine Learning in Healthcare: A Review. International Journal of Darshan Institute on Engineering Research and Emerging Technologies. https://doi.org/10.32692/ijdi-eret/12.1.2023.2309

28. Paper, W. (2017). Next-Generation Healthcare Fraud Management.

29. Patil, R. (2024). AI Revolutionizing Healthcare. https://dypsst.dpu.edu.in/blogs/ai-revolutionizing-healthcare

30. Pitoglou, S. (2018). Machine Learning in Healthcare, Introduction and Real World Application Considerations. International Journal of Reliable and Quality E-Healthcare. https://doi.org/10.4018/ijrqeh.2018040102

31. Rahane, W., Dalvi, H., Magar, Y., Kalane, A., & Jondhale, S. (2018). Lung Cancer Detection Using Image Processing and Machine Learning HealthCare. Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies, ICCTCT 2018. https://doi.org/10.1109/ICCTCT.2018.8551008

32. Rahmiaty. (2021). ENHANCING STUDENTS’ SPEAKING SKILL THROUGH PICTURE WORD INDUCTIVE MODEL (PWIM) MEDIA AT THE EIGHT GRADE OF SMP AL-BIRRU PAREPARE. Frontiers in Neuroscience.

33. Rashid, A. Bin, & Kausik, M. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. https://doi.org/10.1016/j.hybadv.2024.100277

34. Rawat, B., Bist, A. S., Supriyanti, D., Elmanda, V., & Sari, S. N. (2022). AI and Nanotechnology for Healthcare: A survey. APTISI Transactions on Management (ATM). https://doi.org/10.33050/atm.v7i1.1819

35. Saleem, T. J., & Chishti, M. A. (2019). Exploring the Applications of Machine Learning in Healthcare. International Journal of Sensors, Wireless Communications and Control. https://doi.org/10.2174/2210327910666191220103417

36. Sathya, D., Sudha, V., & Jagadeesan, D. (2022). Application of machine learning techniques in healthcare. In Research Anthology on Machine Learning Techniques, Methods, and Applications. https://doi.org/10.4018/978-1-6684-6291-1.ch067

37. Shpachuk, A. (2024). Applications of AI in Healthcare. https://empeek.com/insights/top-ai-applications-in-healthcare/

38. Vyas, S., Gupta, M., & Yadav, R. (2019). Converging Blockchain and Machine Learning for Healthcare. Proceedings - 2019 Amity International Conference on Artificial Intelligence, AICAI 2019. https://doi.org/10.1109/AICAI.2019.8701230

39. IBM Watson Health and its role in personalized treatment: Rashid, A. Bin, & Kausik, M. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. https://doi.org/10.1016/j.hybadv.2024.100277.

40. Viz.ai's impact on stroke treatment: Feldman, A. M. Y., & Staff, F. (2024). How Viz.ai Uses Artificial Intelligence to Treat Stroke Patients Faster.